Principles of Data Science

This book provides readers with a thorough understanding of various research areas within the field of data science. The book introduces readers to various techniques for data acquisition, extraction, and cleaning, data summarizing and modeling, data analysis and communication techniques, data scien...

Full description

Bibliographic Details
Other Authors: Arabnia, Hamid R. (Editor), Daimi, Kevin (Editor), Stahlbock, Robert (Editor), Soviany, Cristina (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2020, 2020
Edition:1st ed. 2020
Series:Transactions on Computational Science and Computational Intelligence
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02835nmm a2200409 u 4500
001 EB001899588
003 EBX01000000000000001062497
005 00000000000000.0
007 cr|||||||||||||||||||||
008 200810 ||| eng
020 |a 9783030439811 
100 1 |a Arabnia, Hamid R.  |e [editor] 
245 0 0 |a Principles of Data Science  |h Elektronische Ressource  |c edited by Hamid R. Arabnia, Kevin Daimi, Robert Stahlbock, Cristina Soviany, Leonard Heilig, Kai Brüssau 
250 |a 1st ed. 2020 
260 |a Cham  |b Springer International Publishing  |c 2020, 2020 
300 |a XIV, 276 p. 102 illus., 55 illus. in color  |b online resource 
505 0 |a Introduction -- Data Acquisition, Extraction, and Cleaning -- Data Summarization and Modeling -- Data Analysis and Communication Techniques -- Data Science Tools -- Deep Learning in Data Science -- Data Science Applications -- Conclusion 
653 |a Communications Engineering, Networks 
653 |a Telecommunication 
653 |a Computational Intelligence 
653 |a Computational intelligence 
653 |a Data Analysis and Big Data 
653 |a Automated Pattern Recognition 
653 |a Information Storage and Retrieval 
653 |a Quantitative research 
653 |a Pattern recognition systems 
653 |a Information storage and retrieval systems 
700 1 |a Daimi, Kevin  |e [editor] 
700 1 |a Stahlbock, Robert  |e [editor] 
700 1 |a Soviany, Cristina  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Transactions on Computational Science and Computational Intelligence 
028 5 0 |a 10.1007/978-3-030-43981-1 
856 4 0 |u https://doi.org/10.1007/978-3-030-43981-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.382 
520 |a This book provides readers with a thorough understanding of various research areas within the field of data science. The book introduces readers to various techniques for data acquisition, extraction, and cleaning, data summarizing and modeling, data analysis and communication techniques, data science tools, deep learning, and various data science applications. Researchers can extract and conclude various future ideas and topics that could result in potential publications or thesis. Furthermore, this book contributes to Data Scientists’ preparation and to enhancing their knowledge of the field. The book provides a rich collection of manuscripts in highly regarded data science topics, edited by professors with long experience in the field of data science. Introduces various techniques, methods, and algorithms adopted by Data Science experts Provides a detailed explanation of data science perceptions, reinforced by practical examples Presents a roadmap of future trends suitable for innovative data science research and practice