Predictive Analytics und Data Mining Eine Einführung mit R

Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils...

Full description

Bibliographic Details
Main Author: von der Hude, Marlis
Format: eBook
Language:German
Published: Wiesbaden Springer Fachmedien Wiesbaden 2020, 2020
Edition:1st ed. 2020
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden. Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei geeignete Grafiken und Konfidenzintervalle. Das Buch verzichtet nicht auf Theorie, es präsentiert jedoch so wenig Theorie wie möglich, aber so viel wie nötig und ist somit optimal für Studium und Selbststudium geeignet. Der Inhalt Deskriptive Verfahren Clusterverfahren Dimensionsreduktion Prädiktive Verfahren für Klassifikations- und Regressionsfragestellungen Empirischer Vergleich der Performance verschiedener Klassifikationsverfahren Die Zielgruppe Studierende der Wirtschaftsinformatik, Informatik und Ingenieurwissenschaften Die Autorin Marlis von der Hude hat Mathematik mit dem Schwerpunkt Statistik an der Freien Universität Berlin studiert und anschließend an der Technischen Universität Berlin promoviert. Nach mehreren praktischen Tätigkeiten im Gesundheits- und Wirtschaftsbereich hat sie zuletzt viele Jahre im Fachbereich Informatik der Hochschule Bonn-Rhein-Sieg gelehrt
Physical Description:XI, 224 S. 118 Abb., 72 Abb. in Farbe online resource
ISBN:9783658301538