Partial differential equations classical theory with a modern touch

Suitable for both senior undergraduate and graduate students, this is a self-contained book dealing with the classical theory of the partial differential equations through a modern approach; requiring minimal previous knowledge. It represents the solutions to three important equations of mathematica...

Full description

Bibliographic Details
Main Authors: Nandakumaran, A. K., Datti, P. S. (Author)
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2020
Series:Cambridge - IISc series
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 02027nmm a2200277 u 4500
001 EB001898987
003 EBX01000000000000001061896
005 00000000000000.0
007 cr|||||||||||||||||||||
008 200724 ||| eng
020 |a 9781108885171 
050 4 |a QA374 
100 1 |a Nandakumaran, A. K. 
245 0 0 |a Partial differential equations  |b classical theory with a modern touch  |c A. K. Nandakumaran, P. S. Datti 
260 |a Cambridge  |b Cambridge University Press  |c 2020 
300 |a xix, 356 pages  |b digital 
505 0 |a First-order partial differential equations : method of characteristics -- Hamilton-Jacobi equation -- Conservation laws -- Classification of second-order equations -- Laplace and Poisson equations -- Heat equation -- One-dimensional wave equation -- Wave equation in higher dimensions -- Cauchy-Kovalevsky theorem and its generalization -- A peep into weak derivatives, Sobolev spaces and weak formulation 
653 |a Differential equations, Partial / Textbooks 
700 1 |a Datti, P. S.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
490 0 |a Cambridge - IISc series 
028 5 0 |a 10.1017/9781108885171 
856 4 0 |u https://doi.org/10.1017/9781108885171  |x Verlag  |3 Volltext 
082 0 |a 515.353 
520 |a Suitable for both senior undergraduate and graduate students, this is a self-contained book dealing with the classical theory of the partial differential equations through a modern approach; requiring minimal previous knowledge. It represents the solutions to three important equations of mathematical physics - Laplace and Poisson equations, Heat or diffusion equation, and wave equations in one and more space dimensions. Keen readers will benefit from more advanced topics and many references cited at the end of each chapter. In addition, the book covers advanced topics such as Conservation Laws and Hamilton-Jacobi Equation. Numerous real-life applications are interspersed throughout the book to retain readers' interest