Machine Learning in Aquaculture Hunger Classification of Lates calcarifer

This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish f...

Full description

Bibliographic Details
Main Authors: Mohd Razman, Mohd Azraai, P. P. Abdul Majeed, Anwar (Author), Muazu Musa, Rabiu (Author), Taha, Zahari (Author)
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2020, 2020
Edition:1st ed. 2020
Series:SpringerBriefs in Applied Sciences and Technology
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02661nmm a2200385 u 4500
001 EB001891101
003 EBX01000000000000001054454
005 00000000000000.0
007 cr|||||||||||||||||||||
008 200224 ||| eng
020 |a 9789811522376 
100 1 |a Mohd Razman, Mohd Azraai 
245 0 0 |a Machine Learning in Aquaculture  |h Elektronische Ressource  |b Hunger Classification of Lates calcarifer  |c by Mohd Azraai Mohd Razman, Anwar P. P. Abdul Majeed, Rabiu Muazu Musa, Zahari Taha, Gian-Antonio Susto, Yukinori Mukai 
250 |a 1st ed. 2020 
260 |a Singapore  |b Springer Nature Singapore  |c 2020, 2020 
300 |a VI, 60 p  |b online resource 
505 0 |a 1 Introduction -- 2 Monitoring and feeding integration of demand feeder systems -- 3 Image processing features extraction on fish behaviour -- 4 Time-series identification of fish feeding behaviour 
653 |a Computational intelligence 
653 |a Computer simulation 
653 |a Computer Modelling 
653 |a Computational Intelligence 
653 |a Animal culture 
653 |a Signal, Speech and Image Processing 
653 |a Animal Science 
653 |a Signal processing 
700 1 |a P. P. Abdul Majeed, Anwar  |e [author] 
700 1 |a Muazu Musa, Rabiu  |e [author] 
700 1 |a Taha, Zahari  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Applied Sciences and Technology 
028 5 0 |a 10.1007/978-981-15-2237-6 
856 4 0 |u https://doi.org/10.1007/978-981-15-2237-6?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 636 
520 |a This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour