Multiscale Multimodal Medical Imaging First International Workshop, MMMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings

This book constitutes the refereed proceedings of the First International Workshop on Multiscale Multimodal Medical Imaging, MMMI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019. The 13 papers presented were carefully reviewed and selected from 18 submissions. The MMMI...

Full description

Bibliographic Details
Other Authors: Li, Quanzheng (Editor), Leahy, Richard (Editor), Dong, Bin (Editor), Li, Xiang (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2020, 2020
Edition:1st ed. 2020
Series:Image Processing, Computer Vision, Pattern Recognition, and Graphics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03087nmm a2200361 u 4500
001 EB001889066
003 EBX01000000000000001052427
005 00000000000000.0
007 cr|||||||||||||||||||||
008 200117 ||| eng
020 |a 9783030379698 
100 1 |a Li, Quanzheng  |e [editor] 
245 0 0 |a Multiscale Multimodal Medical Imaging  |h Elektronische Ressource  |b First International Workshop, MMMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings  |c edited by Quanzheng Li, Richard Leahy, Bin Dong, Xiang Li 
250 |a 1st ed. 2020 
260 |a Cham  |b Springer International Publishing  |c 2020, 2020 
300 |a X, 109 p. 55 illus., 46 illus. in color  |b online resource 
505 0 |a Multi-Modal Image Prediction via Spatial Hybrid U-Net -- Automatic Segmentation of Liver CT Image Based on Dense Pyramid Network -- OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images -- Neural Architecture Search for Optimizing Deep Belief Network Models of fMRI Data -- Feature Pyramid based Attention for Cervical Image Classification -- Single-scan Dual-tracer Separation Network Based on Pre-trained GRU -- PGU-net+: Progressive Growing of U-net+ for Automated Cervical Nuclei Segmentation -- Automated Classification of Arterioles and Venules for Retina Fundus Images using Dual Deeply-Supervised Network -- Liver Segmentation from Multimodal Images using HED-Mask R-CNN -- aEEG Signal Analysis with Ensemble Learning for Newborn Seizure Detection -- Speckle Noise Removal in Ultrasound Images Using A Deep Convolutional Neural Network and A Specially Designed Loss Function -- Automatic Sinus Surgery Skill Assessment Based on Instrument Segmentation and Tracking in Endoscopic Video -- U-Net Training with Instance-Layer Normalization 
653 |a Computer Vision 
653 |a Machine learning 
653 |a Machine Learning 
653 |a Pattern recognition systems 
653 |a Automated Pattern Recognition 
653 |a Computer vision 
700 1 |a Leahy, Richard  |e [editor] 
700 1 |a Dong, Bin  |e [editor] 
700 1 |a Li, Xiang  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics 
028 5 0 |a 10.1007/978-3-030-37969-8 
856 4 0 |u https://doi.org/10.1007/978-3-030-37969-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.37 
520 |a This book constitutes the refereed proceedings of the First International Workshop on Multiscale Multimodal Medical Imaging, MMMI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019. The 13 papers presented were carefully reviewed and selected from 18 submissions. The MMMI workshop aims to advance the state of the art in multi-scale multi-modal medical imaging, including algorithm development, implementation of methodology, and experimental studies. The papers focus on medical image analysis and machine learning, especially on machine learning methods for data fusion and multi-score learning