A first course in fourier analysis

This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ide...

Full description

Bibliographic Details
Main Author: Kammler, David W.
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2007
Edition:Second edition
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 05760nmm a2200313 u 4500
001 EB001887977
003 EBX01000000000000001051338
005 00000000000000.0
007 cr|||||||||||||||||||||
008 200106 ||| eng
020 |a 9780511619700 
050 4 |a QA403.5 
100 1 |a Kammler, David W. 
245 0 0 |a A first course in fourier analysis  |c David W. Kammler 
250 |a Second edition 
260 |a Cambridge  |b Cambridge University Press  |c 2007 
300 |a 1 volume (various pagings)  |b digital 
505 0 |a part 1. The mathematical core. Chapter 1. Fourier's representation for functions on R, Tp, Z, and PN. 1.1. Synthesis and analysis equations ; 1.2. Examples of Fourier's representation ; 1.3. The Parseval identities and related results ; 1.4. The Fourier-Poisson cube ; 1.5. The validity of Fourier's representation ; Chapter 2. Convolution of functions on R, Tp, Z, and PN. 2.1. Formal definitions of f * g, F x g ; 2.2. Computation of f * g ; 2.3. Mathematical properties of the convolution product ; 2.4. Examples of convolution and correlation ; Further reading ; Exercises ; Chapter 3. The calculus for finding Fourier transformations of functions on R. 3.1. Using the definition to find Fourier transformations ; 3.2. Rules for finding Fourier transformations ; 3.3. Selected applications of the Fourier transform calculus ; Further reading ; Exercises ; Chapter 4. The calculus for finding Fourier transforms of functions of Tp, Z, and PN. 4.1. Fourier series ; 4.2.  
505 0 |a Selected applications of Fourier series ; 4.3. Discrete Fourier transformations ; 4.4. Selected applications of the DFT calculus ; Further reading ; Exercises ; Chapter 5. Operator identities associated with Fourier analysis ; 5.1. the concept of an operator identity ; 5.2. Operators generated by powers of F ; 5.3. Operators related to complex conjugation ; 5.4. Fourier transforms of operators ; 5.5. Rules for Hartley transforms ; 5.6. Hilbert transforms ; Further reading ; Exercises ; Chapter 6. The fact Fourier transform. 6.1. Pre-FFT computation of the DFT ; 6.2. Deprivation of the FFT via DFT rules ; 6.3. The bit reversal permutation ; 6.4. Sparse matric factorization of F when N = 2m ; 6.5. Sparse matric factorization of H when N = 2m ; 6.6. Sparse matric factorization of F when N = P1P2...Pm ; 6.7. Kronecker product factorization of F ; Further reading ; Exercises ; Chapter 7. Generalized functions on R. 7.1. The concept of a generalized function ; 7.2.  
505 0 |a Common generalized functions ; 7.3. Manipulation of generalized functions ; 7.4. Derivatives and simple differential equations ; 7.5. The Fourier transform calculus for generalized functions ; 7.6. Limits of generalized functions ; 7.7. Periodic generalized functions ; 7.8. Alternative definitions for generalized functions ; Further reading ; Exercises --  
505 0 |a Part 2. Selected applications. Chapter 8. Sampling. 8.1. Sampling and interpolation ; 8.2. Reconstruction of f from its samples ; 8.3. Reconstruction of f from samples of a1 * f, a2 * f, ... ; 8.4. Approximation of almost bandlimited functions ; Further reading ; Exercises ; Chapter 9. Partial differential equations. 9.1. Introduction ; 9.2. The wave equation ; 9.3. The diffusion equation ; 9.4. The diffraction equation ; 9.5. Fast computation of frames for movies ; Further reading ; Exercises ; Chapter 10. Wavelets. 10.1. The Haar wavelets ; 10.2. Support-limited wavelets ; 10.3. Analysis and synthesis with Daubechies wavelets ; 10.4. Filter banks ; Further reading ; Exercises ; Chapter 11. Musical tones. 11.1. Basic concepts ; 11.2. Spectrograms ; 11.3. Additive synthesis of tones ; 11.4. FM synthesis of tones ; 11.5. Synthesis of tones from noise ; 11.6. Music with mathematical structure ; Further reading ; Exercises ; Chapter 12. Probability. 12.1.  
505 0 |a Probability density functions of R ; 12.2. Some mathematical tools ; 12.3. The characteristic function ; 12.4. Random variables ; 12.5. The central limit theorem ; Further reading ; Exercises -- Appendices. Appendix 1. The impact of Fourier analysis ; Appendix 2. Functions and their Fourier transforms ; Appendix 3. The Fourier transform calculus ; Appendix 4. Operators and their Fourier transforms ; Appendix 5. The Whittaker-Robinson flow chart for harmonic analysis ; Appendix 6. FORTRAN code for a randix 2 FFT ; Appendix 7. The standard normal probability distribution ; Appendix 8. Frequencies of the piano keyboard 
653 |a Fourier analysis 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
028 5 0 |a 10.1017/CBO9780511619700 
856 4 0 |u https://doi.org/10.1017/CBO9780511619700  |x Verlag  |3 Volltext 
082 0 |a 515.2433 
520 |a This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others