Partial Differential Equations of Classical Structural Members A Consistent Approach

The derivation and understanding of Partial Differential Equations relies heavily on the fundamental knowledge of the first years of scientific education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills. Thus, it is a challenging topic for pros...

Full description

Bibliographic Details
Main Author: Öchsner, Andreas
Format: eBook
Language:English
Published: Cham Springer International Publishing 2020, 2020
Edition:1st ed. 2020
Series:SpringerBriefs in Continuum Mechanics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02092nmm a2200313 u 4500
001 EB001885856
003 EBX01000000000000001049223
005 00000000000000.0
007 cr|||||||||||||||||||||
008 191202 ||| eng
020 |a 9783030353117 
100 1 |a Öchsner, Andreas 
245 0 0 |a Partial Differential Equations of Classical Structural Members  |h Elektronische Ressource  |b A Consistent Approach  |c by Andreas Öchsner 
250 |a 1st ed. 2020 
260 |a Cham  |b Springer International Publishing  |c 2020, 2020 
300 |a VIII, 92 p. 75 illus., 28 illus. in color  |b online resource 
505 0 |a Introduction to structural modeling -- Rods or bars -- Euler-Bernoulli beams -- Timoshenko beams -- Plane members -- Classical plates -- Shear deformable plates -- Three-dimensional solids -- Introduction to transient problems: Rods or bars 
653 |a Solid Mechanics 
653 |a Mechanics, Applied 
653 |a Classical Mechanics 
653 |a Partial Differential Equations 
653 |a Partial differential equations 
653 |a Mechanics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Continuum Mechanics 
856 4 0 |u https://doi.org/10.1007/978-3-030-35311-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 531 
520 |a The derivation and understanding of Partial Differential Equations relies heavily on the fundamental knowledge of the first years of scientific education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills. Thus, it is a challenging topic for prospective engineers and scientists. This volume provides a compact overview on the classical Partial Differential Equations of structural members in mechanics. It offers a formal way to uniformly describe these equations. All derivations follow a common approach: the three fundamental equations of continuum mechanics, i.e., the kinematics equation, the constitutive equation, and the equilibrium equation, are combined to construct the partial differential equations.