Applying Predictive Analytics Finding Value in Data

This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex...

Full description

Bibliographic Details
Main Authors: McCarthy, Richard V., McCarthy, Mary M. (Author), Ceccucci, Wendy (Author), Halawi, Leila (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2019, 2019
Edition:1st ed. 2019
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02794nmm a2200373 u 4500
001 EB001865144
003 EBX01000000000000001029235
005 00000000000000.0
007 cr|||||||||||||||||||||
008 190425 ||| eng
020 |a 9783030140380 
100 1 |a McCarthy, Richard V. 
245 0 0 |a Applying Predictive Analytics  |h Elektronische Ressource  |b Finding Value in Data  |c by Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci, Leila Halawi 
250 |a 1st ed. 2019 
260 |a Cham  |b Springer International Publishing  |c 2019, 2019 
300 |a X, 205 p  |b online resource 
505 0 |a Introduction to Predictive Analytics -- Know Your Data – Data Preparation -- What do Descriptive Statistics Tell Us -- The First of the Big Three – Regression -- The Second of the Big Three – Decision Trees -- The Third of the Big Three - Neural Networks -- Model Comparisons and Scoring -- Appendix A -- Data Dictionary for the Automobile Insurance Claim Fraud Data Example -- Conclusion 
653 |a Data Analysis and Big Data 
653 |a Computational intelligence 
653 |a Quantitative research 
653 |a Data mining 
653 |a Computational Intelligence 
653 |a Telecommunication 
653 |a Communications Engineering, Networks 
653 |a Data Mining and Knowledge Discovery 
700 1 |a McCarthy, Mary M.  |e [author] 
700 1 |a Ceccucci, Wendy  |e [author] 
700 1 |a Halawi, Leila  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-3-030-14038-0 
856 4 0 |u https://doi.org/10.1007/978-3-030-14038-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.382 
520 |a This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes. Focuses on how to use predictive analytic techniques to analyze historical data for the purpose of predicting future results; Takes an applied approach and focus on solving business problems using predictive analytics and featurescase studies and a variety of examples; Uses examples in SAS Enterprise Miner, one of world’s leading analytics software tools