Variational Regularization for Systems of Inverse Problems Tikhonov Regularization with Multiple Forward Operators

Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scientific fields. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their specific structure. Such an approach allows to...

Full description

Bibliographic Details
Main Author: Huber, Richard
Format: eBook
Language:English
Published: Wiesbaden Springer Fachmedien Wiesbaden 2019, 2019
Edition:1st ed. 2019
Series:BestMasters
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02223nmm a2200337 u 4500
001 EB001861510
003 EBX01000000000000001025605
005 00000000000000.0
007 cr|||||||||||||||||||||
008 190304 ||| eng
020 |a 9783658253905 
100 1 |a Huber, Richard 
245 0 0 |a Variational Regularization for Systems of Inverse Problems  |h Elektronische Ressource  |b Tikhonov Regularization with Multiple Forward Operators  |c by Richard Huber 
250 |a 1st ed. 2019 
260 |a Wiesbaden  |b Springer Fachmedien Wiesbaden  |c 2019, 2019 
300 |a IX, 136 p. 1 illus  |b online resource 
505 0 |a General Tikhonov Regularization -- Specific Discrepancies -- Regularization Functionals -- Application to STEM Tomography Reconstruction 
653 |a Applied mathematics 
653 |a Engineering mathematics 
653 |a Mathematical analysis 
653 |a Analysis 
653 |a Applications of Mathematics 
653 |a Computer mathematics 
653 |a Analysis (Mathematics) 
653 |a Computational Mathematics and Numerical Analysis 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a BestMasters 
856 4 0 |u https://doi.org/10.1007/978-3-658-25390-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519 
520 |a Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scientific fields. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their specific structure. Such an approach allows to choose the regularization weights of each subproblem individually with respect to the corresponding noise levels and degrees of ill-posedness. Contents General Tikhonov Regularization Specific Discrepancies Regularization Functionals Application to STEM Tomography Reconstruction Target Groups Researchers and students in the field of mathematics Experts in the areas of mathematics, imaging, computer vision and nanotechnology The Author Richard Huber wrote his master’s thesis under the supervision of Prof. Dr. Kristian Bredies at the Institute for Mathematics and Scientific Computing at Graz University, Austria