Fuzzy Lie Algebras

This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuition...

Full description

Bibliographic Details
Main Author: Akram, Muhammad
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2018, 2018
Edition:1st ed. 2018
Series:Infosys Science Foundation Series in Mathematical Sciences
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03051nmm a2200289 u 4500
001 EB001858753
003 EBX01000000000000001022849
005 00000000000000.0
007 cr|||||||||||||||||||||
008 190101 ||| eng
020 |a 9789811332210 
100 1 |a Akram, Muhammad 
245 0 0 |a Fuzzy Lie Algebras  |h Elektronische Ressource  |c by Muhammad Akram 
250 |a 1st ed. 2018 
260 |a Singapore  |b Springer Nature Singapore  |c 2018, 2018 
300 |a XIX, 302 p. 14 illus., 4 illus. in color  |b online resource 
505 0 |a Chapter 1. Fuzzy Lie Structures -- Chapter 2. Interval-valued Fuzzy Lie Structures -- Chapter 3. Intuitionistic Fuzzy Lie Ideals -- Chapter 4. Generalized Fuzzy Lie Subalgebras -- Chapter 5. Fuzzy Lie Structures over a Fuzzy Field -- Chapter 6. Bipolar Fuzzy Lie Structures -- Chapter 7. m−Polar Fuzzy Lie Ideals of Lie Algebras -- Chapter 8. Fuzzy Soft Lie algebras -- Chapter 9. Rough Fuzzy Lie Ideals -- Chapter 10. Fuzzy n-Lie Algebras 
653 |a Mathematical logic 
653 |a General Algebraic Systems 
653 |a Universal algebra 
653 |a Mathematical Logic and Foundations 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Infosys Science Foundation Series in Mathematical Sciences 
856 4 0 |u https://doi.org/10.1007/978-981-13-3221-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 512 
520 |a This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists. Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable bipolar fuzzy Lie ideals and nilpotent bipolar fuzzy Lie ideals. Chap. 7 deals with the properties of m-polar fuzzy Lie subalgebras and m-polar fuzzy Lie ideals, while Chap. 8 addresses concepts like soft intersection Lie algebras and fuzzy soft Lie algebras. Chap. 9 deals with rough fuzzy Lie subalgebras and rough fuzzy Lie ideals, and lastly, Chap. 10 investigates certain properties of fuzzy subalgebras and ideals of n-ary Lie algebras