A Spectral Theory for Simply Periodic Solutions of the Sinh-Gordon Equation

This book develops a spectral theory for the integrable system of 2-dimensional, simply periodic, complex-valued solutions u of the sinh-Gordon equation. Such solutions (if real-valued) correspond to certain constant mean curvature surfaces in Euclidean 3-space. Spectral data for such solutions are...

Full description

Bibliographic Details
Main Author: Klein, Sebastian
Format: eBook
Language:English
Published: Cham Springer International Publishing 2018, 2018
Edition:1st ed. 2018
Series:Lecture Notes in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:This book develops a spectral theory for the integrable system of 2-dimensional, simply periodic, complex-valued solutions u of the sinh-Gordon equation. Such solutions (if real-valued) correspond to certain constant mean curvature surfaces in Euclidean 3-space. Spectral data for such solutions are defined (following ideas of Hitchin and Bobenko) and the space of spectral data is described by an asymptotic characterization. Using methods of asymptotic estimates, the inverse problem for the spectral data is solved along a line, i.e. the solution u is reconstructed on a line from the spectral data. Finally, a Jacobi variety and Abel map for the spectral curve are constructed and used to describe the change of the spectral data under translation of the solution u. The book's primary audience will be research mathematicians interested in the theory of infinite-dimensional integrable systems, or in the geometry of constant mean curvature surfaces.
Physical Description:VIII, 334 p. 7 illus online resource
ISBN:9783030012762