Sobolev spaces on metric measure spaces an approach based on upper gradients

Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of m...

Full description

Bibliographic Details
Main Authors: Heinonen, Juha, Koskela, Pekka (Author), Shanmugalingam, Nageswari (Author), Tyson, Jeremy T. (Author)
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2015
Series:New mathematical monographs
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 02624nmm a2200313 u 4500
001 EB001852204
003 EBX01000000000000001016508
005 00000000000000.0
007 cr|||||||||||||||||||||
008 181005 ||| eng
020 |a 9781316135914 
050 4 |a QA611.28 
100 1 |a Heinonen, Juha 
245 0 0 |a Sobolev spaces on metric measure spaces  |b an approach based on upper gradients  |c Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson 
260 |a Cambridge  |b Cambridge University Press  |c 2015 
300 |a xii, 434 pages  |b digital 
505 0 |a Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions 
653 |a Metric spaces 
653 |a Sobolev spaces 
700 1 |a Koskela, Pekka  |e [author] 
700 1 |a Shanmugalingam, Nageswari  |e [author] 
700 1 |a Tyson, Jeremy T.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
490 0 |a New mathematical monographs 
028 5 0 |a 10.1017/CBO9781316135914 
856 4 0 |u https://doi.org/10.1017/CBO9781316135914  |x Verlag  |3 Volltext 
082 0 |a 515.7 
520 |a Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities