Imaginary Mathematics for Computer Science

The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as “imaginary”, and the use of the term “complex number” compounded the unnecessary mystery ass...

Full description

Bibliographic Details
Main Author: Vince, John
Format: eBook
Language:English
Published: Cham Springer International Publishing 2018, 2018
Edition:1st ed. 2018
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03412nmm a2200289 u 4500
001 EB001846461
003 EBX01000000000000001010966
005 00000000000000.0
007 cr|||||||||||||||||||||
008 180901 ||| eng
020 |a 9783319946375 
100 1 |a Vince, John 
245 0 0 |a Imaginary Mathematics for Computer Science  |h Elektronische Ressource  |c by John Vince 
250 |a 1st ed. 2018 
260 |a Cham  |b Springer International Publishing  |c 2018, 2018 
300 |a XVII, 301 p. 99 illus. in color  |b online resource 
505 0 |a Introduction -- Complex Numbers -- Matrix Algebra -- Quaternions -- Octonions -- Geometric Algebra -- Trigonometric Identities using Complex Numbers -- Combining Waves using Complex Numbers -- Circuit Analysis using Complex Numbers -- Geometry Using Geometric Algebra -- Rotating Vectors using Quaternions -- Complex Numbers and the Riemann Hypothesis -- The Mandelbrot Set -- Conclusion -- Index 
653 |a Computer science / Mathematics 
653 |a Mathematical Applications in Computer Science 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-3-319-94637-5 
856 4 0 |u https://doi.org/10.1007/978-3-319-94637-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 004.0151 
520 |a The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as “imaginary”, and the use of the term “complex number” compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton’s quaternions, Cayley’s octonions, to Grassmann’s geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable. The first two chapters cover the imaginary unit and its integration with real numbers.  
520 |a Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science 
520 |a Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton’s invention of quaternions, and Cayley’s development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger’s famous wave equation.