Fire Retardancy Behavior of Polymer/Clay Nanocomposites

This thesis investigates the early ignition behavior of polymer/clay nanocomposites, which are perceived as potential eco-friendly flame retardant systems. It examines the correlation between clay structural chemistry and high-temperature transformations with clay-assisted decomposition of organic m...

Full description

Main Author: Zope, Indraneel Suhas
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Singapore Springer Singapore 2018, 2018
Edition:1st ed. 2018
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Summary:This thesis investigates the early ignition behavior of polymer/clay nanocomposites, which are perceived as potential eco-friendly flame retardant systems. It examines the correlation between clay structural chemistry and high-temperature transformations with clay-assisted decomposition of organic macromolecules. In particular, it investigates the unique effects of metal ions like Mg2+, Al3+ and Fe3+ that are inherent in clays (smectite) on the combustion and thermo-oxidative decomposition of polyamide 6. The results indicate that metal ions present on/in montmorillonite platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 thermal decomposition.  Lastly, a simple solution in the form of a physical coating on clay surface is proposed, based on the role of polymer–clay interfacial interaction
Physical Description:XXXII, 165 p. 95 illus., 78 illus. in color online resource
ISBN:9789811083273