Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic

In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected...

Full description

Bibliographic Details
Main Authors: Olivas, Frumen, Valdez, Fevrier (Author), Castillo, Oscar (Author), Melin, Patricia (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2018, 2018
Edition:1st ed. 2018
Series:SpringerBriefs in Computational Intelligence
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02543nmm a2200337 u 4500
001 EB001800581
003 EBX01000000000000000974079
005 00000000000000.0
007 cr|||||||||||||||||||||
008 180405 ||| eng
020 |a 9783319708515 
100 1 |a Olivas, Frumen 
245 0 0 |a Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic  |h Elektronische Ressource  |c by Frumen Olivas, Fevrier Valdez, Oscar Castillo, Patricia Melin 
250 |a 1st ed. 2018 
260 |a Cham  |b Springer International Publishing  |c 2018, 2018 
300 |a VII, 105 p. 25 illus  |b online resource 
505 0 |a Introduction -- Theory and Background -- Problems Statement -- Methodology -- Simulation Results -- Statistical Analysis and Comparison of Results 
653 |a Computational intelligence 
653 |a Artificial Intelligence 
653 |a Computational Intelligence 
653 |a Artificial intelligence 
700 1 |a Valdez, Fevrier  |e [author] 
700 1 |a Castillo, Oscar  |e [author] 
700 1 |a Melin, Patricia  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Computational Intelligence 
028 5 0 |a 10.1007/978-3-319-70851-5 
856 4 0 |u https://doi.org/10.1007/978-3-319-70851-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.3 
520 |a In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed. Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method. Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment