Multibiometric Watermarking with Compressive Sensing Theory : Techniques and Applications

This book presents multibiometric watermarking techniques for security of biometric data. This book also covers transform domain multibiometric watermarking techniques and their advantages and limitations. The authors have developed novel watermarking techniques with a combination of Compressive Sen...

Full description

Main Authors: Thanki, Rohit M., Dwivedi, Vedvyas J. (Author), Borisagar, Komal R. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2018, 2018
Edition:1st ed. 2018
Series:Signals and Communication Technology
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03055nmm a2200409 u 4500
001 EB001726984
003 EBX01000000000000000965238
005 00000000000000.0
007 cr|||||||||||||||||||||
008 180205 ||| eng
020 |a 9783319731834 
100 1 |a Thanki, Rohit M. 
245 0 0 |a Multibiometric Watermarking with Compressive Sensing Theory  |h Elektronische Ressource  |b Techniques and Applications  |c by Rohit M. Thanki, Vedvyas J. Dwivedi, Komal R. Borisagar 
250 |a 1st ed. 2018 
260 |a Cham  |b Springer International Publishing  |c 2018, 2018 
300 |a XXI, 172 p. 104 illus., 48 illus. in color  |b online resource 
505 0 |a Chapter 1. Introduction -- Chapter 2.Related Works and Background Information -- Chapter 3.Issues in Biometric System and Proposed Research Methodology -- Chapter 4.Multibiometric Watermarking Technique using Discrete Wavelet Trans-form (DWT) -- Chapter 5. Multibiometric Watermarking Technique using Discrete Cosine Trans-form (DCT) and Discrete Wavelet Transform (DWT) -- Chapter 6.Multibiometric Watermarking Technique using Discrete Wavelet Trans-form (DWT) and Singular Value Decomposition (SVD) -- Chapter 7.Multibiometric Watermarking Technique using Fast Discrete Curvelet Transform (FDCuT) and Discrete Cosine Transform (DCT) -- Chapter 8.Conclusions and Future Work 
653 |a Image processing 
653 |a Computational linguistics 
653 |a Signal, Image and Speech Processing 
653 |a Speech processing systems 
653 |a Database Management 
653 |a Signal processing 
653 |a Natural Language Processing (NLP) 
653 |a Database management 
653 |a Natural language processing (Computer science) 
653 |a Computational Linguistics 
700 1 |a Dwivedi, Vedvyas J.  |e [author] 
700 1 |a Borisagar, Komal R.  |e [author] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Signals and Communication Technology 
856 |u https://doi.org/10.1007/978-3-319-73183-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.382 
520 |a This book presents multibiometric watermarking techniques for security of biometric data. This book also covers transform domain multibiometric watermarking techniques and their advantages and limitations. The authors have developed novel watermarking techniques with a combination of Compressive Sensing (CS) theory for the security of biometric data at the system database of the biometric system. The authors show how these techniques offer higher robustness, authenticity, better imperceptibility, increased payload capacity, and secure biometric watermarks. They show how to use the CS theory for the security of biometric watermarks before embedding into the host biometric data. The suggested methods may find potential applications in the security of biometric data at various banking applications, access control of laboratories, nuclear power stations, military base, and airports