Investigations of Cellular and Molecular Biophysical Properties by Atomic Force Microscopy Nanorobotics

This book presents methodological and application research in detecting cellular and molecular biophysical properties based on atomic force microscopy (AFM) nanorobotics. Series methods for in situ label-free visualizing and quantifying the multiple physical properties of single cells and single mol...

Full description

Bibliographic Details
Main Author: Li, Mi
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2018, 2018
Edition:1st ed. 2018
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02067nmm a2200385 u 4500
001 EB001652350
003 EBX01000000000000000955025
005 00000000000000.0
007 cr|||||||||||||||||||||
008 171103 ||| eng
020 |a 9789811068294 
100 1 |a Li, Mi 
245 0 0 |a Investigations of Cellular and Molecular Biophysical Properties by Atomic Force Microscopy Nanorobotics  |h Elektronische Ressource  |c by Mi Li 
250 |a 1st ed. 2018 
260 |a Singapore  |b Springer Nature Singapore  |c 2018, 2018 
300 |a XIII, 135 p. 75 illus  |b online resource 
653 |a Nanophysics 
653 |a Spectrum analysis 
653 |a Control, Robotics, Automation 
653 |a Bioanalysis and Bioimaging 
653 |a Spectroscopy 
653 |a Immunology 
653 |a Nanoscience 
653 |a Control engineering 
653 |a Robotics 
653 |a Biophysics 
653 |a Automation 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
028 5 0 |a 10.1007/978-981-10-6829-4 
856 4 0 |u https://doi.org/10.1007/978-981-10-6829-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.41 
082 0 |a 620.115 
520 |a This book presents methodological and application research in detecting cellular and molecular biophysical properties based on atomic force microscopy (AFM) nanorobotics. Series methods for in situ label-free visualizing and quantifying the multiple physical properties of single cells and single molecules were developed, including immobilization strategies for observing fine structures of living cells, measurements of single-cell mechanics, force recognition of molecular interactions, and mapping protein organizations on cell surface. The biomedical applications of these methods in clinical lymphoma treatments were explored in detail, including primary sample preparation, cancer cell recognition, AFM detection and data analysis. Future directions about the biomedical applications of AFM are also given