Adapted Compressed Sensing for Effective Hardware Implementations A Design Flow for Signal-Level Optimization of Compressed Sensing Stages

This book describes algorithmic methods and hardware implementations that aim to help realize the promise of Compressed Sensing (CS), namely the ability to reconstruct high-dimensional signals from a properly chosen low-dimensional “portrait”. The authors describe a design flow and some low-resource...

Full description

Bibliographic Details
Main Authors: Mangia, Mauro, Pareschi, Fabio (Author), Cambareri, Valerio (Author), Rovatti, Riccardo (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2018, 2018
Edition:1st ed. 2018
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02938nmm a2200349 u 4500
001 EB001542217
003 EBX01000000000000000940303
005 00000000000000.0
007 cr|||||||||||||||||||||
008 170802 ||| eng
020 |a 9783319613734 
100 1 |a Mangia, Mauro 
245 0 0 |a Adapted Compressed Sensing for Effective Hardware Implementations  |h Elektronische Ressource  |b A Design Flow for Signal-Level Optimization of Compressed Sensing Stages  |c by Mauro Mangia, Fabio Pareschi, Valerio Cambareri, Riccardo Rovatti, Gianluca Setti 
250 |a 1st ed. 2018 
260 |a Cham  |b Springer International Publishing  |c 2018, 2018 
300 |a XIV, 319 p. 180 illus., 142 illus. in color  |b online resource 
505 0 |a Chapter 1. Introduction to Compressed Sensing: Fundamentals and Guarantees -- Chapter 2.How (Well) Compressed Sensing Works in Practice -- Chapter 3. From Universal to Adapted Acquisition: Rake that Signal! -- Chapter 4.The Rakeness Problem with Implementation and Complexity Constraints -- Chapter 5.Generating Raking Matrices: a Fascinating Second-Order Problem -- Chapter 6.Architectures for Compressed Sensing -- Chapter 7.Analog-to-information Conversion -- Chapter 8.Low-complexity Biosignal Compression using Compressed Sensing -- Chapter 9.Security at the analog-to-information interface using Compressed Sensing 
653 |a Electronics and Microelectronics, Instrumentation 
653 |a Electronic circuits 
653 |a Signal, Speech and Image Processing 
653 |a Electronics 
653 |a Electronic Circuits and Systems 
653 |a Signal processing 
700 1 |a Pareschi, Fabio  |e [author] 
700 1 |a Cambareri, Valerio  |e [author] 
700 1 |a Rovatti, Riccardo  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-3-319-61373-4 
856 4 0 |u https://doi.org/10.1007/978-3-319-61373-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.3815 
520 |a This book describes algorithmic methods and hardware implementations that aim to help realize the promise of Compressed Sensing (CS), namely the ability to reconstruct high-dimensional signals from a properly chosen low-dimensional “portrait”. The authors describe a design flow and some low-resource physical realizations of sensing systems based on CS. They highlight the pros and cons of several design choices from a pragmatic point of view, and show how a lightweight and mild but effective form of adaptation to the target signals can be the key to consistent resource saving. The basic principle of the devised design flow can be applied to almost any CS-based sensing system, including analog-to-information converters, and has been proven to fit an extremely diverse set of applications. Many practical aspects required to put a CS-based sensing system to work are also addressed, including saturation, quantization, and leakage phenomena