Galois representations and (Phi, Gamma)-modules

Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to pro...

Full description

Bibliographic Details
Main Author: Schneider, P.
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2017
Series:Cambridge studies in advanced mathematics
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 01797nmm a2200265 u 4500
001 EB001491600
003 EBX01000000000000000921189
005 00000000000000.0
007 cr|||||||||||||||||||||
008 170620 ||| eng
020 |a 9781316981252 
050 4 |a QA247.3 
100 1 |a Schneider, P. 
245 0 0 |a Galois representations and (Phi, Gamma)-modules  |c Peter Schneider 
260 |a Cambridge  |b Cambridge University Press  |c 2017 
300 |a vii, 148 pages  |b digital 
653 |a Galois theory 
653 |a p-adic groups 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
490 0 |a Cambridge studies in advanced mathematics 
028 5 0 |a 10.1017/9781316981252 
856 4 0 |u https://doi.org/10.1017/9781316981252  |x Verlag  |3 Volltext 
082 0 |a 512.32 
520 |a Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin-Tate extensions of local number fields, and provides an introduction to Lubin-Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location