Facial Kinship Verification A Machine Learning Approach

This book provides the first systematic study of facial kinship verification, a new research topic in biometrics. It presents three key aspects of facial kinship verification: 1) feature learning for kinship verification, 2) metric learning for kinship verification, and 3) video-based kinship verifi...

Full description

Bibliographic Details
Main Authors: Yan, Haibin, Lu, Jiwen (Author)
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2017, 2017
Edition:1st ed. 2017
Series:SpringerBriefs in Computer Science
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02176nmm a2200337 u 4500
001 EB001455360
003 EBX01000000000000000916230
005 00000000000000.0
007 cr|||||||||||||||||||||
008 170608 ||| eng
020 |a 9789811044847 
100 1 |a Yan, Haibin 
245 0 0 |a Facial Kinship Verification  |h Elektronische Ressource  |b A Machine Learning Approach  |c by Haibin Yan, Jiwen Lu 
250 |a 1st ed. 2017 
260 |a Singapore  |b Springer Nature Singapore  |c 2017, 2017 
300 |a X, 82 p. 33 illus., 29 illus. in color  |b online resource 
505 0 |a 1. Introduction to Facial Kinship Verification -- 2. Feature Learning for Facial Kinship Verification -- 3. Metric Learning for Facial Kinship Verification -- 4. Video-Based Facial Kinship Verification -- 5. Conclusions and Future Work 
653 |a Computer vision 
653 |a Computer Vision 
653 |a Biometrics 
653 |a Automated Pattern Recognition 
653 |a Biometric identification 
653 |a Pattern recognition systems 
700 1 |a Lu, Jiwen  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Computer Science 
028 5 0 |a 10.1007/978-981-10-4484-7 
856 4 0 |u https://doi.org/10.1007/978-981-10-4484-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.37 
520 |a This book provides the first systematic study of facial kinship verification, a new research topic in biometrics. It presents three key aspects of facial kinship verification: 1) feature learning for kinship verification, 2) metric learning for kinship verification, and 3) video-based kinship verification, and reviews state-of-the-art research findings on facial kinship verification. Many of the feature-learning and metric-learning methods presented in this book can also be easily applied for other face analysis tasks, e.g., face recognition, facial expression recognition, facial age estimation and gender classification. Further, it is a valuable resource for researchers working on other computer vision and pattern recognition topics such as feature-learning-based and metric-learning-based visual analysis