01592nmm a2200301 u 4500001001200000003002700012005001700039007002400056008004100080020001800121100001700139245008600156260006600242300002000308653001900328653002200347653001900369041001900388989003800407490003400445500004800479028002600527773004600553773005900599856007900658082001100737520054200748EB001383320EBX0100000000000000090628500000000000000.0cr|||||||||||||||||||||170329 ||| eng a97814008817961 aMilnor, John00aIntroduction to Algebraic K-Theory. (AM-72)hElektronische RessourcecJohn Milnor aPrinceton, NJbPrinceton University Pressc2016, [2016]©1972 aonline resource aAbelian groups aAssociative rings aFunctor theory07aeng2ISO 639-2 bGRUYMPGaDeGruyter MPG Collection0 aAnnals of Mathematics Studies aMode of access: Internet via World Wide Web50a10.1515/97814008817960 tPrinceton eBook Package Archive 1931-19990 tPrinceton Annals of Mathematics Backlist eBook Package uhttps://www.degruyter.com/doi/book/10.1515/9781400881796xVerlag3Volltext0 a512/.4 aAlgebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic