Elliptic curves and big Galois representations

The arithmetic properties of modular forms and elliptic curves lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular...

Full description

Bibliographic Details
Main Author: Delbourgo, Daniel
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2008
Series:London Mathematical Society lecture note series
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 01881nmm a2200277 u 4500
001 EB001383201
003 EBX01000000000000000906166
005 00000000000000.0
007 cr|||||||||||||||||||||
008 170324 ||| eng
020 |a 9780511721281 
050 4 |a QA567.2.E44 
100 1 |a Delbourgo, Daniel 
245 0 0 |a Elliptic curves and big Galois representations  |c Daniel Delbourgo 
246 3 1 |a Elliptic Curves & Big Galois Representations 
260 |a Cambridge  |b Cambridge University Press  |c 2008 
300 |a ix, 281 pages  |b digital 
653 |a Curves, Elliptic 
653 |a Galois theory 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
490 0 |a London Mathematical Society lecture note series 
028 5 0 |a 10.1017/CBO9780511721281 
856 4 0 |u https://doi.org/10.1017/CBO9780511721281  |x Verlag  |3 Volltext 
082 0 |a 516.352 
520 |a The arithmetic properties of modular forms and elliptic curves lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and Swinnerton-Dyer (BSD) formula. Three main steps are outlined: the first is to parametrise 'big' cohomology groups using (deformations of) modular symbols. Finiteness results for big Selmer groups are then established. Finally, at weight two, the arithmetic invariants of these Selmer groups allow the control of data from the BSD conjecture. As the first book on the subject, the material is introduced from scratch; both graduate students and professional number theorists will find this an ideal introduction. Material at the very forefront of current research is included, and numerical examples encourage the reader to interpret abstract theorems in concrete cases