P-adic analysis : a short course on recent work

This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number f...

Full description

Main Author: Koblitz, Neal
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 1980
Series:London Mathematical Society lecture note series
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 01653nmm a2200253 u 4500
001 EB001382305
003 EBX01000000000000000905270
005 00000000000000.0
007 cr|||||||||||||||||||||
008 170324 ||| eng
020 |a 9780511526107 
050 4 |a QA241 
100 1 |a Koblitz, Neal 
245 0 0 |a P-adic analysis  |b a short course on recent work  |c Neal Koblitz 
260 |a Cambridge  |b Cambridge University Press  |c 1980 
300 |a 163 pages  |b digital 
653 |a p-adic analysis 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
490 0 |a London Mathematical Society lecture note series 
856 |u https://doi.org/10.1017/CBO9780511526107  |x Verlag  |3 Volltext 
082 0 |a 512.74 
520 |a This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research