Periodic Feedback Stabilization for Linear Periodic Evolution Equations

This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equatio...

Full description

Bibliographic Details
Main Authors: Wang, Gengsheng, Xu, Yashan (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2016, 2016
Edition:1st ed. 2016
Series:SpringerBriefs in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02163nmm a2200409 u 4500
001 EB001346634
003 EBX01000000000000000900824
005 00000000000000.0
007 cr|||||||||||||||||||||
008 170301 ||| eng
020 |a 9783319492384 
100 1 |a Wang, Gengsheng 
245 0 0 |a Periodic Feedback Stabilization for Linear Periodic Evolution Equations  |h Elektronische Ressource  |c by Gengsheng Wang, Yashan Xu 
250 |a 1st ed. 2016 
260 |a Cham  |b Springer International Publishing  |c 2016, 2016 
300 |a XII, 127 p. 1 illus. in color  |b online resource 
653 |a Mechanics, Applied 
653 |a Continuous Optimization 
653 |a Calculus of Variations and Optimization 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Multibody Systems and Mechanical Vibrations 
653 |a System theory 
653 |a Vibration 
653 |a Multibody systems 
653 |a Differential Equations 
653 |a Mathematical optimization 
653 |a Calculus of variations 
653 |a Differential equations 
700 1 |a Xu, Yashan  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Mathematics 
028 5 0 |a 10.1007/978-3-319-49238-4 
856 4 0 |u https://doi.org/10.1007/978-3-319-49238-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 003 
520 |a This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics