Hilbert's Seventh Problem Solutions and Extensions

This exposition is primarily a survey of the elementary yet subtle innovations of several mathematicians between 1929 and 1934 that led to partial and then complete solutions to Hilbert’s Seventh Problem (from the International Congress of Mathematicians in Paris, 1900). This volume is suitable for...

Full description

Main Author: Tubbs, Robert
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Singapore Springer Singapore 2016, 2016
Edition:1st ed. 2016
Series:IMSc Lecture Notes in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 01994nmm a2200349 u 4500
001 EB001272710
003 EBX01000000000000000887352
005 00000000000000.0
007 cr|||||||||||||||||||||
008 161202 ||| eng
020 |a 9789811026454 
100 1 |a Tubbs, Robert 
245 0 0 |a Hilbert's Seventh Problem  |h Elektronische Ressource  |b Solutions and Extensions  |c by Robert Tubbs 
250 |a 1st ed. 2016 
260 |a Singapore  |b Springer Singapore  |c 2016, 2016 
300 |a IX, 85 p. 1 illus  |b online resource 
505 0 |a Its statement and origins -- Chapter 2. The transcendence of e; and ep -- Chapter 3. Three partial solutions -- Chapter 4. Gelfond's solution -- Chapter 5. Schneider's solution -- Chapter 6. Hilbert's seventh problem and transcendental functions -- Chapter 7. Variants and generalizations 
653 |a Functional analysis 
653 |a Number theory 
653 |a Number Theory 
653 |a Integral equations 
653 |a History of Mathematical Sciences 
653 |a Functional Analysis 
653 |a Integral Equations 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a IMSc Lecture Notes in Mathematics 
856 |u https://doi.org/10.1007/978-981-10-2645-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 510.9 
520 |a This exposition is primarily a survey of the elementary yet subtle innovations of several mathematicians between 1929 and 1934 that led to partial and then complete solutions to Hilbert’s Seventh Problem (from the International Congress of Mathematicians in Paris, 1900). This volume is suitable for both mathematics students, wishing to experience how different mathematical ideas can come together to establish results, and for research mathematicians interested in the fascinating progression of mathematical ideas that solved Hilbert’s problem and established a modern theory of transcendental numbers.