Big Data SMACK : A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka

Integrate full-stack open-source fast data pipeline architecture and choose the correct technology—Spark, Mesos, Akka, Cassandra, and Kafka (SMACK)—in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and cr...

Full description

Main Authors: Estrada, Raul, Ruiz, Isaac (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berkeley, CA Apress 2016, 2016
Edition:1st ed. 2016
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02550nmm a2200337 u 4500
001 EB001230857
003 EBX01000000000000000874160
005 00000000000000.0
007 cr|||||||||||||||||||||
008 161005 ||| eng
020 |a 9781484221754 
100 1 |a Estrada, Raul 
245 0 0 |a Big Data SMACK  |h Elektronische Ressource  |b A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka  |c by Raul Estrada, Isaac Ruiz 
250 |a 1st ed. 2016 
260 |a Berkeley, CA  |b Apress  |c 2016, 2016 
300 |a XXV, 264 p. 74 illus., 52 illus. in color  |b online resource 
505 0 |a Part 1. Introduction -- Chapter 1. Big Data, Big Problems -- Chapter 2. Big Data, Big Solutions -- Part 2. Playing SMACK -- Chapter 3. The Language: Scala -- Chapter 4. The Model: Akka -- Chapter 5. Storage. Apache Cassandra -- Chapter 6. The View -- Chapter 7. The Manager: Apache Mesos -- Chapter 8. The Broker: Apache Kafka -- Part 3. Improving SMACK -- Chapter 9. Fast Data Patterns -- Chapter 10. Big Data Pipelines -- Chapter 11. Glossary 
653 |a Big Data 
653 |a Big data 
653 |a Database Management 
653 |a Data structures (Computer science) 
653 |a Database management 
653 |a Data Structures 
700 1 |a Ruiz, Isaac  |e [author] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
856 |u https://doi.org/10.1007/978-1-4842-2175-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 005.7 
520 |a Integrate full-stack open-source fast data pipeline architecture and choose the correct technology—Spark, Mesos, Akka, Cassandra, and Kafka (SMACK)—in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each technology and, more importantly, how to integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by each technology. This book covers the five main concepts of data pipeline architecture and how to integrate, replace, and reinforce every layer: The engine: Apache Spark The container: Apache Mesos The model: Akka< The storage: Apache Cassandra The broker: Apache Kafka