Diffractive Optics for Thin-Film Silicon Solar Cells

This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid...

Full description

Bibliographic Details
Main Author: Schuster, Christian Stefano
Format: eBook
Language:English
Published: Cham Springer International Publishing 2017, 2017
Edition:1st ed. 2017
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02598nmm a2200349 u 4500
001 EB001230136
003 EBX01000000000000000873439
005 00000000000000.0
007 cr|||||||||||||||||||||
008 161005 ||| eng
020 |a 9783319442785 
100 1 |a Schuster, Christian Stefano 
245 0 0 |a Diffractive Optics for Thin-Film Silicon Solar Cells  |h Elektronische Ressource  |c by Christian Stefano Schuster 
250 |a 1st ed. 2017 
260 |a Cham  |b Springer International Publishing  |c 2017, 2017 
300 |a XX, 114 p. 56 illus., 11 illus. in color  |b online resource 
505 0 |a Introduction -- Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells -- Fabrication and Characterisation of Diffractive Nanostructures -- Achievements -- Conclusions and Outlook 
653 |a Nanophysics 
653 |a Laser 
653 |a Optical Materials 
653 |a Nanoscience 
653 |a Lasers 
653 |a Energy harvesting 
653 |a Optical materials 
653 |a Energy Harvesting 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
028 5 0 |a 10.1007/978-3-319-44278-5 
856 4 0 |u https://doi.org/10.1007/978-3-319-44278-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621,366 
520 |a This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid basis for future designs. Light trapping with photonic nanostructures is a powerful method of increasing the absorption in thin film solar cells. Many light trapping methods have been studied, but to date there has been no comprehensive figure of merit to compare these different methods quantitatively. This comparison allows us to establish important design rules for highly performing structures; one such rule is the structuring of the absorber layer from both sides, for which the authors introduce a novel and simple layer-transfer technique. A closely related issue is the question of plasmonic vs. dielectric nanostructures; the authors present an experimentaldemonstration, aided by a detailed theoretical assessment, highlighting the importance of considering the multipass nature of light trapping in a thin film, which is an essential effect that has been neglected in previous work and which allows us to quantify the parasitic losses.