Moduli of Weighted Hyperplane Arrangements

This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces p...

Full description

Bibliographic Details
Main Author: Alexeev, Valery
Other Authors: Bini, Gilberto (Editor), Lahoz, Martí (Editor), Macrí, Emanuele (Editor)
Format: eBook
Language:English
Published: Basel Birkhäuser 2015, 2015
Edition:1st ed. 2015
Series:Advanced Courses in Mathematics - CRM Barcelona
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02168nmm a2200349 u 4500
001 EB001033986
003 EBX01000000000000000827508
005 00000000000000.0
007 cr|||||||||||||||||||||
008 150601 ||| eng
020 |a 9783034809153 
100 1 |a Alexeev, Valery 
245 0 0 |a Moduli of Weighted Hyperplane Arrangements  |h Elektronische Ressource  |c by Valery Alexeev ; edited by Gilberto Bini, Martí Lahoz, Emanuele Macrí, Paolo Stellari 
250 |a 1st ed. 2015 
260 |a Basel  |b Birkhäuser  |c 2015, 2015 
300 |a VII, 104 p. 50 illus., 16 illus. in color  |b online resource 
505 0 |a Preface -- Introduction -- Stable pairs and their moduli -- Stable toric varieties -- Matroids -- Matroid polytopes and tilings -- Weighted stable hyperplane arrangements -- Abelian Galois covers -- Bibliography 
653 |a Algebraic Geometry 
653 |a Convex geometry  
653 |a Algebraic geometry 
653 |a Convex and Discrete Geometry 
653 |a Discrete geometry 
700 1 |a Bini, Gilberto  |e [editor] 
700 1 |a Lahoz, Martí  |e [editor] 
700 1 |a Macrí, Emanuele  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Advanced Courses in Mathematics - CRM Barcelona 
028 5 0 |a 10.1007/978-3-0348-0915-3 
856 4 0 |u https://doi.org/10.1007/978-3-0348-0915-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 516.35 
520 |a This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements