Predicting Recessions A New Approach for Identifying Leading Indicators and Forecast Combinations

This study proposes a data-based algorithm to select a subset of indicators from a large data set with a focus on forecasting recessions. The algorithm selects leading indicators of recessions based on the forecast encompassing principle and combines the forecasts. An application to U.S. data shows...

Full description

Bibliographic Details
Main Author: Kisinbay, Turgut
Other Authors: Baba, Chikako
Format: eBook
Language:English
Published: Washington, D.C. International Monetary Fund 2011
Series:IMF Working Papers
Subjects:
Online Access:
Collection: International Monetary Fund - Collection details see MPG.ReNa
LEADER 02993nmm a2200649 u 4500
001 EB000926919
003 EBX01000000000000000720515
005 00000000000000.0
007 cr|||||||||||||||||||||
008 150128 ||| eng
020 |a 9781463922016 
100 1 |a Kisinbay, Turgut 
245 0 0 |a Predicting Recessions  |b A New Approach for Identifying Leading Indicators and Forecast Combinations  |c Turgut Kisinbay, Chikako Baba 
260 |a Washington, D.C.  |b International Monetary Fund  |c 2011 
300 |a 30 pages 
651 4 |a United States 
653 |a Labor market 
653 |a Diffusion Processes 
653 |a National accounts 
653 |a Income economics 
653 |a Labor 
653 |a Forecasting and Other Model Applications 
653 |a Labor markets 
653 |a Labour 
653 |a Business cycles 
653 |a Macroeconomics 
653 |a Infrastructure 
653 |a Economic growth 
653 |a Capacity utilization 
653 |a Multiple or Simultaneous Equation Models 
653 |a Time-Series Models 
653 |a Economic Development: Urban, Rural, Regional, and Transportation Analysis 
653 |a Model Evaluation and Selection 
653 |a Cycles 
653 |a Production and Operations Management 
653 |a Prices, Business Fluctuations, and Cycles: General (includes Measurement and Data) 
653 |a Production 
653 |a Dynamic Quantile Regressions 
653 |a Multiple Variables: General 
653 |a State Space Models 
653 |a Cyclical indicators 
653 |a Business Fluctuations 
653 |a Demand and Supply of Labor: General 
653 |a Dynamic Treatment Effect Models 
653 |a Saving and investment 
653 |a Macroeconomics: Production 
653 |a Industrial capacity 
653 |a Prices, Business Fluctuations, and Cycles: Forecasting and Simulation 
653 |a Housing 
700 1 |a Baba, Chikako 
041 0 7 |a eng  |2 ISO 639-2 
989 |b IMF  |a International Monetary Fund 
490 0 |a IMF Working Papers 
028 5 0 |a 10.5089/9781463922016.001 
856 4 0 |u https://elibrary.imf.org/view/journals/001/2011/235/001.2011.issue-235-en.xml?cid=25288-com-dsp-marc  |x Verlag  |3 Volltext 
082 0 |a 330 
520 |a This study proposes a data-based algorithm to select a subset of indicators from a large data set with a focus on forecasting recessions. The algorithm selects leading indicators of recessions based on the forecast encompassing principle and combines the forecasts. An application to U.S. data shows that forecasts obtained from the algorithm are consistently among the best in a large comparative forecasting exercise at various forecasting horizons. In addition, the selected indicators are reasonable and consistent with the standard leading indicators followed by many observers of business cycles. The suggested algorithm has several advantages, including wide applicability and objective variable selection