Feature Selection for Data and Pattern Recognition

This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of act...

Full description

Bibliographic Details
Other Authors: Stańczyk, Urszula (Editor), Jain, Lakhmi C. (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2015, 2015
Edition:1st ed. 2015
Series:Studies in Computational Intelligence
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02132nmm a2200313 u 4500
001 EB000913934
003 EBX01000000000000000709830
005 00000000000000.0
007 cr|||||||||||||||||||||
008 150107 ||| eng
020 |a 9783662456200 
100 1 |a Stańczyk, Urszula  |e [editor] 
245 0 0 |a Feature Selection for Data and Pattern Recognition  |h Elektronische Ressource  |c edited by Urszula Stańczyk, Lakhmi C. Jain 
250 |a 1st ed. 2015 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2015, 2015 
300 |a XVIII, 355 p. 74 illus., 20 illus. in color  |b online resource 
505 0 |a Feature Selection for Data and Pattern Recogniton: an Introduction -- Part I Estimation of Feature Importance -- Part II Rough Set Approach to Attribute Reduction -- Part III Rule Discovery and Evaluation -- Part IV Data- and Domain-oriented Methodologies 
653 |a Computational intelligence 
653 |a Artificial Intelligence 
653 |a Computational Intelligence 
653 |a Artificial intelligence 
700 1 |a Jain, Lakhmi C.  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Studies in Computational Intelligence 
028 5 0 |a 10.1007/978-3-662-45620-0 
856 4 0 |u https://doi.org/10.1007/978-3-662-45620-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.3 
520 |a This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies