Text Mining From Ontology Learning to Automated Text Processing Applications

This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining, and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite t...

Full description

Bibliographic Details
Other Authors: Biemann, Chris (Editor), Mehler, Alexander (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2014, 2014
Edition:1st ed. 2014
Series:Theory and Applications of Natural Language Processing
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 04016nmm a2200385 u 4500
001 EB000913679
003 EBX01000000000000000709575
005 00000000000000.0
007 cr|||||||||||||||||||||
008 150107 ||| eng
020 |a 9783319126555 
100 1 |a Biemann, Chris  |e [editor] 
245 0 0 |a Text Mining  |h Elektronische Ressource  |b From Ontology Learning to Automated Text Processing Applications  |c edited by Chris Biemann, Alexander Mehler 
250 |a 1st ed. 2014 
260 |a Cham  |b Springer International Publishing  |c 2014, 2014 
300 |a X, 238 p. 50 illus., 23 illus. in color  |b online resource 
505 0 |a Foreword -- PART I. Text Mining Techniques and Methodologies.-  Thomas Eckart, Dirk Goldhahn, and Uwe Quasthoff: Building large resources for text mining -- Hristo Tanev: Learning Textologies: Networks of Linked Word Clusters -- Zornitsa Kozareva: Simple, Fast and Accurate Taxonomy Learning -- Patrick Oesterling, Christian Heine, Gunther H. Weber and Gerik Scheuermann: A Topology-Based Approach to Visualize the Thematic Composition of Document Collections -- Alexander Mehler, Tim vor der Brück, Rüdiger Gleim and Tim Geelhaar: Towards a Network Model of the Coreness of Texts; An Experiment in Classifying Latin Texts using the TTLab Latin Tagger -- PART II. Text Mining Applications. Stefan Bordag and Christian Hänig and Christian Beutenmüller: A structuralist approach for personal knowledge exploration systems on mobile devices -- Frank Oemig and Bernd Blobel: Natural Language Processing Supporting Interoperability in Healthcare -- Veronica Perez-Rosas, Cristian Bologa, Mihai Burzo and Rada Mihalcea: Deception Detection Within and Across Cultures -- Jonathan Sonntag and Manfred Stede: Sentiment Analysis: What’s your Opinion? -- Marten Düring and Antal van den Bosch: Multi-perspective Event Detection in Texts Documenting the 1944 Battle of Arnhem -- Marco Büchler, Philip R. Burns, Martin Müller, Emily Franzini and Greta Franzini: Towards a Historical Text Re-use Detection 
653 |a Digital humanities 
653 |a Information Storage and Retrieval 
653 |a Data mining 
653 |a Application software 
653 |a Information storage and retrieval systems 
653 |a Computer Application in Administrative Data Processing 
653 |a Data Mining and Knowledge Discovery 
653 |a Computer and Information Systems Applications 
653 |a Information technology / Management 
653 |a Digital Humanities 
700 1 |a Mehler, Alexander  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Theory and Applications of Natural Language Processing 
028 5 0 |a 10.1007/978-3-319-12655-5 
856 4 0 |u https://doi.org/10.1007/978-3-319-12655-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.312 
520 |a This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining, and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite to build lexical resources such as dictionaries and ontologies, and also has direct applications in automated text processing in fields such as history, healthcare and mobile applications, just to name a few. This volume gives an update in terms of the recent gains in text mining methods and reflects the most recent achievements with respect to the automatic build-up of large lexical resources. It addresses researchers that already perform text mining, and those who want to enrich their battery of methods. Selected articles can be used to support graduate-level teaching. The book is suitable for all readers that completed undergraduate studies of computational linguistics, quantitative linguistics, computer science and computational humanities. It assumes basic knowledge of computer science and corpus processing as well as of statistics