Nanobiotechnology inorganic nanoparticles vs organic nanoparticles

Nanotechnology is considered the next big revolution in medicine and biology. For the past 20 years, research groups have been involved in the development of new applications of novel nanomaterials for biotechnological applications. Nanomaterials are also becoming increasingly important in medical a...

Full description

Bibliographic Details
Main Author: Fuente, Jesus M. de la
Other Authors: Grazu, V.
Format: eBook
Language:English
Published: [Place of publication not identified] Elsevier 2012, 2012
Series:Frontiers of nanoscience
Subjects:
Online Access:
Collection: Elsevier ScienceDirect eBooks - Collection details see MPG.ReNa
Table of Contents:
  • Includes bibliographical references and index
  • pt. I Synthesis and Characterization of Nanoparticles
  • 1. Synthesis Applications of Gold Nanoparticles / Pablo del Pino
  • 1. Introduction
  • 2. Ancient Uses of GNPs
  • 3. Synthesis of GNPs
  • 4.Common Anisotropic GNPs for Bioapplications
  • 4.1. Nanorods
  • 4.2. Nanoplates
  • 4.3. Gold Nanoshells
  • 4.4. Nanocages and Hollow Nanostructures
  • 4.5. Branched Nanostructures, Nanostars, or Nanoflowers
  • 5. Derivatization of GNPs
  • 6. Bioapplications of GNPs
  • References
  • 2. Synthesis of Inorganic Nanoparticles / Maria del Puerto Morales
  • 1. General Strategies for the Synthesis of Uniform Inorganic Nanoparticles
  • 1.1. Mechanism of Nanoparticle Formation
  • 1.2. Strategies for Size and Shape Control
  • 1.3. Synthesis Methods
  • 2. Magnetic Nanoparticles
  • 2.1. Precipitation of Salts in Aqueous Medium
  • 2.2. Hydrothermal
  • 2.3. Microemulsions
  • 2.4. Polyol Process
  • 2.5. Decomposition in Organic Media
  • 2.6. Aerosol Pyrolysis
  • Anisometric Particles
  • 3. Hybrids
  • 3.1. Inorganic-Inorganic
  • 3.2.Organic-Inorganic
  • 3.3. Multicomponents
  • 4. Concluding Remarks
  • References
  • 3. Synthesis of Inorganic Nanocrystals for Biological Fluorescence Imaging / Peter Reiss
  • 1. Introduction
  • 1.1. Semiconductor Nanocrystals as Fluorescent Biological Labels
  • 1.2. Basic Properties of Semiconductor Nanocrystals
  • 1.3. Nanocrystal Synthesis
  • 2. Aqueous Synthesis of Nanocrystals
  • 2.1. CdTe Nanocrystals
  • 2.2. ZnSe Nanocrystals
  • 3. Synthesis in Organic Medium
  • 3.1. Cadmium Chalcogenide Nanocrystals
  • 3.2. Doped II-VI Semiconductor QDs
  • 3.3. III-V Semiconductor Nanocrystals
  • 3.4. Nanocrystals of Ternary Chalcopyrite Semiconductors
  • 3.5. Cd3P2 and Cd3As2 Nanocrystals
  • 3.6. Aqueous Phase Transfer of Nanocrystals Prepared in Organics
  • 4. Conclusions
  • References
  • 4. Synthesis of Organic Nanoparticles / Sergio E. Moya
  • 1. Introduction
  • 1.1.Organic Versus Inorganic
  • Advantages and Drawbacks / Javier Rojo
  • 1. Introduction
  • 2. Divergent Synthetic Approaches
  • 3. Convergent Synthetic Approaches
  • 4. Conclusions
  • References
  • pt. II Biotechnological Applications
  • 6. Applications of Inorganic Nanoparticles for Biotechnology / Catherine C. Berry
  • 1. Magnetic Nanoparticles
  • 1.1. Magnetic Resonance Imaging
  • 1.2. Hyperthermia
  • 1.3. Magnetic Targeted Therapies/Delivery
  • 2. Gold Nanoparticles
  • 2.1. Biological Imaging
  • 2.2. Cell Delivery Vehicles
  • 2.3. Biosensors
  • 3. Quantum Dots
  • 3.1. Biological Imaging
  • 3.2. Targeted Therapies
  • 4. Carbon Nanotubes
  • 4.1. Neuronal Tissue Engineering
  • 4.2. Imaging and Cancer Treatment
  • References
  • Internalization Pathways of Superparamagnetic Iron Oxide NPs
  • 3.1. Preparation and Characterization of SPIONs
  • 3.2. Results
  • 4. Limitations and Conclusion
  • References
  • 8.Organic Nanoparticles / Isabel Segura Gil
  • 1. Introduction
  • 2. Use of Nanoparticles in Nucleic Acid Delivery
  • 2.1. Background
  • 2.2. Engineered Biomaterials for Vector Backbones
  • 2.3. Environmental Interactions
  • 2.4. Intracellular Trafficking
  • 3. Immunoassays
  • 3.1. Background
  • 3.2. Nanotechnology and Improvement of Sensitivity
  • 4. Nanoparticles and the Fundamental Study of Cell Adhesion Mechanisms
  • 4.1. Adhesion Basics
  • 4.2. Liposomes as Biomimetic Cell Membranes
  • 4.3. Polymeric Beads
  • 5. Conclusion
  • Acknowledgments
  • References
  • pt. III Applications in Diagnostics and Biosensing
  • 9. Application of Inorganic Nanoparticles for Diagnosis Based on MRI / Maria L. Garcia-Martin
  • 1. Introduction
  • 2. Magnetic NPs for MRI
  • 2.1. The Superparamagnetism Phenomenon
  • 2.2. Conventional Iron-Oxide-Based NPs for MRI
  • 2.3. Magnetic NPs in the Nanotechnology Era
  • 3. MRI Methods to Image NPs
  • 3.1. Susceptibility-Weighted Imaging
  • 3.2. Positive Contrast Techniques
  • 3.3. Quantitative Susceptibility Mapping
  • 3.4. Ultra-Short TE and Zero TE MRI
  • References
  • 10. Biosensors Based on Nanoparticles and Electrochemical Detection / Pilar Batalla
  • 1. Introduction
  • 2. Electrochemical Sensors
  • 2.1. GNPs Mixed with the Electrode Material
  • 2.2. Direct Deposition of GNPs onto the Electrode
  • 2.3. GNPs Immobilized onto Self-assembled Monolayers
  • 2.4. GNPs as a Label
  • 2.5. GNPs and Carbon Nanotubes
  • 3. Optical Sensors
  • 3.1. Surface Plasmon
  • 3.2. SPR and Localized SPR
  • 3.3. Scanometric Detection of Light Scattering
  • 3.4. Surface-Enhanced Raman Scattering
  • 3.5. Fluorescence Quenching
  • 3.6. Lateral LFIAs
  • 4. Mass-Sensitive Sensors
  • References
  • 11. Magnetic Nanoparticles for Application in Biomedical Sensing / Lee Josephson
  • 1. Introduction
  • 2. Magnetic Relaxation Properties
  • 3. Magnetic Relaxation Switches
  • 3.1. Mechanism of MRSws
  • 3.2. Type I MRSw
  • 3.3. Type II MRSw
  • 3.4. Aggregation-Based Implantable MR Devices
  • 3.5. Post Filtration MR Sensors
  • 4. Applications of MRSw
  • 4.1. Detection of Proteins
  • 4.2. Detection of Enzyme Activities
  • 4.3. Detection of Small Molecules
  • 4.4. Detection of Nucleic Acids
  • 4.5. Detection of Viruses
  • 4.6. Detection of Cancer Cells
  • 4.7. Detection of Bacteria
  • 5. Other Types of MP-Based Sensors
  • 5.1. Magnetoresistive Sensors
  • 5.2. Spin Valve Sensors
  • 5.3. Magnetophoretic Sensors
  • 6. Conclusions
  • References
  • Magnetic Fluid Hyperthermia
  • 3. Hyperthermia Based on Gold Anisotropic NPs: Photothermal Therapy
  • References
  • 14. Nanocarriers as Nanomedicines: Design Concepts and Recent Advances / Christian Sanchez-Espinel
  • 1. Introduction
  • 2. Nanocarriers Fate: Barriers to Overcome
  • 2.1. Absorption and Administration Route Implications
  • 2.2. Biodistribution
  • 2.3. Metabolism and Excretion
  • 3. Targeting Strategies
  • 3.1. Passive Targeting
  • 3.2. Active Targeting
  • Liposomes and Solid Lipid Nanoparticles
  • 4.2. Dendrimers
  • 4.3. Polymeric Ns
  • 4.4. Albumin-Based Ns
  • 4.5. Excipients and Emulsifiers
  • 5. Toxicity of Non-biodegradable Nanostructures
  • 5.1. Toxicity of Heavy Metals and Trace Metals
  • 5.2. Asbestosis and Silicosis
  • 5.3. Toxicity of Carbon-Based Ns
  • 5.4. Metallic Nanoparticles
  • 6. Conclusion
  • Acknowledgements
  • References
  • 16. Overview of Nanomedicines Regulation in the European Union / Ignasi Gispert
  • 1. Introduction
  • 2. Medicinal Products
  • 3. Medical Devices
  • 4. Biological Products
  • 5. Borderline and Combined Products
  • 6. The Precautionary Principle and the Incremental Approach Strategy
  • 6.1. The Precautionary Principle
  • 6.2. The Incremental Approach Strategy
  • References