Inverse M-Matrices and Ultrametric Matrices

The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses...

Full description

Bibliographic Details
Main Authors: Dellacherie, Claude, Martinez, Servet (Author), San Martin, Jaime (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2014, 2014
Edition:1st ed. 2014
Series:Lecture Notes in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02417nmm a2200349 u 4500
001 EB000901493
003 EBX01000000000000000698064
005 00000000000000.0
007 cr|||||||||||||||||||||
008 141202 ||| eng
020 |a 9783319102986 
100 1 |a Dellacherie, Claude 
245 0 0 |a Inverse M-Matrices and Ultrametric Matrices  |h Elektronische Ressource  |c by Claude Dellacherie, Servet Martinez, Jaime San Martin 
250 |a 1st ed. 2014 
260 |a Cham  |b Springer International Publishing  |c 2014, 2014 
300 |a X, 236 p. 14 illus  |b online resource 
505 0 |a Inverse M - matrices and potentials -- Ultrametric Matrices -- Graph of Ultrametric Type Matrices -- Filtered Matrices -- Hadamard Functions of Inverse M - matrices -- Notes and Comments Beyond Matrices -- Basic Matrix Block Formulae -- Symbolic Inversion of a Diagonally Dominant M - matrices -- Bibliography -- Index of Notations -- Index 
653 |a Probabilities 
653 |a Potential theory (Mathematics) 
653 |a Game Theory 
653 |a Potential Theory 
653 |a Probability Theory 
653 |a Game theory 
700 1 |a Martinez, Servet  |e [author] 
700 1 |a San Martin, Jaime  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Lecture Notes in Mathematics 
028 5 0 |a 10.1007/978-3-319-10298-6 
856 4 0 |u https://doi.org/10.1007/978-3-319-10298-6?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.96 
520 |a The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph