Set-valued Optimization An Introduction with Applications

Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an...

Full description

Bibliographic Details
Main Authors: Khan, Akhtar A., Tammer, Christiane (Author), Zălinescu, Constantin (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2015, 2015
Edition:1st ed. 2015
Series:Vector Optimization
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02952nmm a2200385 u 4500
001 EB000899459
003 EBX01000000000000000696579
005 00000000000000.0
007 cr|||||||||||||||||||||
008 141103 ||| eng
020 |a 9783642542657 
100 1 |a Khan, Akhtar A. 
245 0 0 |a Set-valued Optimization  |h Elektronische Ressource  |b An Introduction with Applications  |c by Akhtar A. Khan, Christiane Tammer, Constantin Zălinescu 
250 |a 1st ed. 2015 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2015, 2015 
300 |a XXII, 765 p. 29 illus  |b online resource 
505 0 |a Introduction -- Order Relations and Ordering Cones -- Continuity and Differentiability -- Tangent Cones and Tangent Sets -- Nonconvex Separation Theorems -- Hahn-Banach Type Theorems -- Hahn-Banach Type Theorems -- Conjugates and Subdifferentials -- Duality -- Existence Results for Minimal Points -- Ekeland Variational Principle -- Derivatives and Epiderivatives of Set-valued Maps -- Optimality Conditions in Set-valued Optimization -- Sensitivity Analysis in Set-valued Optimization and Vector Variational Inequalities -- Numerical Methods for Solving Set-valued Optimization Problems -- Applications 
653 |a Operations Research, Management Science 
653 |a Operations research 
653 |a Optimization 
653 |a Management science 
653 |a Continuous Optimization 
653 |a Game Theory 
653 |a Game theory 
653 |a Mathematical optimization 
653 |a Operations Research and Decision Theory 
700 1 |a Tammer, Christiane  |e [author] 
700 1 |a Zălinescu, Constantin  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Vector Optimization 
028 5 0 |a 10.1007/978-3-642-54265-7 
856 4 0 |u https://doi.org/10.1007/978-3-642-54265-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519.6 
520 |a Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality, and applications in economicsamong other things