Numerical methods for nonlinear elliptic differential equations a synopsis

The author proves in a systematic and unifying way stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation...

Full description

Main Author: Bohmer, K.
Format: eBook
Language:English
Published: Oxford Oxford University Press 2010, 2010
Series:Numerical mathematics and scientific computation / Numerical mathematics and scientific computation
Subjects:
Online Access:
Collection: Oxford University Press - Collection details see MPG.ReNa
LEADER 01402nmm a2200289 u 4500
001 EB000728765
003 EBX01000000000000000581847
005 00000000000000.0
007 cr|||||||||||||||||||||
008 180413 ||| eng
020 |a 9780191595172 
020 |a 0191595179 
050 4 |a QA374 
100 1 |a Bohmer, K. 
245 0 0 |a Numerical methods for nonlinear elliptic differential equations  |h Elektronische Ressource  |b a synopsis  |c Klaus Bohmer 
260 |a Oxford  |b Oxford University Press  |c 2010, 2010 
300 |a xxvii, 746 p.  |b ill 
505 0 |a Includes bibliographical references and index 
653 |a Differential equations, Elliptic / Numerical solutions 
653 |a Differential equations, Nonlinear / Numerical solutions 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OUP  |a Oxford University Press 
490 0 |a Numerical mathematics and scientific computation / Numerical mathematics and scientific computation 
856 |u http://dx.doi.org/10.1093/acprof:oso/9780199577040.001.0001?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.3'533 
520 |a The author proves in a systematic and unifying way stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation theory