New Developments in Singularity Theory

Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in mos...

Full description

Bibliographic Details
Other Authors: Wiersma, Dirk (Editor), Wall, C.T.C. (Editor), Zakalyukin, V. (Editor)
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 2001, 2001
Edition:1st ed. 2001
Series:NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03273nmm a2200397 u 4500
001 EB000714936
003 EBX01000000000000000568018
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9789401008341 
100 1 |a Wiersma, Dirk  |e [editor] 
245 0 0 |a New Developments in Singularity Theory  |h Elektronische Ressource  |c edited by Dirk Wiersma, C.T.C. Wall, V. Zakalyukin 
250 |a 1st ed. 2001 
260 |a Dordrecht  |b Springer Netherlands  |c 2001, 2001 
300 |a VIII, 472 p  |b online resource 
505 0 |a A: Singularities of real maps -- Classifications in Singularity Theory and Their Applications -- Applications of Flag Contact Singularities -- On Stokes Sets -- Resolutions of discriminants and topology of their complements -- Classifying Spaces of Singularities and Thorn Polynomials -- Singularities and Noncommutative Geometry -- B: Singular complex varietes -- The Geometry of Families of Singular Curves -- On the preparation theorem for subanalytic functions -- Computing Hodge-theoretic invariants of singularities -- Frobenius manifolds and variance of the spectral numbers -- Monodromy and Hodge Theory of Regular Functions -- Bifurcations and topology of meromorphic germs -- Unitary reflection groups and automorphisms of simple, hypersurface singularities -- Simple Singularities and Complex Reflections -- C: Singularities of holomorphic maps -- Discriminants, vector fields and singular hypersurfaces -- The theory of integral closure of ideals and modules: Applications and new developments -- Nonlinear Sections of Nonisolated Complete Intersections -- The Vanishing Topology of Non Isolated Singularities 
653 |a Several Complex Variables and Analytic Spaces 
653 |a Algebraic Geometry 
653 |a Functions of complex variables 
653 |a Functions of real variables 
653 |a Real Functions 
653 |a Manifolds and Cell Complexes 
653 |a Algebraic geometry 
653 |a Manifolds (Mathematics) 
653 |a Global analysis (Mathematics) 
653 |a Global Analysis and Analysis on Manifolds 
700 1 |a Wall, C.T.C.  |e [editor] 
700 1 |a Zakalyukin, V.  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry 
028 5 0 |a 10.1007/978-94-010-0834-1 
856 4 0 |u https://doi.org/10.1007/978-94-010-0834-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.94 
520 |a Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps