Mössbauer Spectroscopy

Rudolph Mossbauer discovered the phenomenon of recoil-free nuclear resonance fluorescence in 1957-58 and the first indications of hyperfine interactions in a chemical compound were obtained by Kistner and Sunyar in 1960. From these beginnings the technique of Mossbauer spectroscopy rapidly emerged a...

Full description

Bibliographic Details
Main Author: Greenwood, N. N.
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1971, 1971
Edition:1st ed. 1971
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 07207nmm a2200349 u 4500
001 EB000713158
003 EBX01000000000000000566240
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9789400956971 
100 1 |a Greenwood, N. N. 
245 0 0 |a Mössbauer Spectroscopy  |h Elektronische Ressource  |c by N. N. Greenwood 
250 |a 1st ed. 1971 
260 |a Dordrecht  |b Springer Netherlands  |c 1971, 1971 
300 |a XII, 660 p. 118 illus  |b online resource 
505 0 |a 16.13 Gold (197Au) -- 16.14 Mercury (201Hg) -- 17. The Rare-earth Elements -- 17.1 Praseodymium (141Pr) -- 17.2 Neodymium (145Nd) -- 17.3 Promethium (147Pm) -- 17.4 Samarium (149Sm, 152Sm, 154Sm) -- 17.5 Europium (151Eu, 153Eu) -- 17.6 Gadolinium (154Gd, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd) -- 17.7 Terbium (159Tb) -- 17.8 Dysprosium (160Dy, 161Dy, 162Dy, 164Dy) -- 17.9 Holmium (165Ho) -- 17.10 Erbium (164Er, 166Er, 167Er, 168Er, 170Er) -- 17.11 Thulium (169Tm) -- 17.12 Ytterbium (170Yb, 171Yb, 172Yb, 174Yb, 176Yb) -- 18. The Actinide Elements -- 18.1 Thorium (232Th) -- 18.2 Protactinium (231Pa) -- 18.3 Uranium (238U) -- 18.4 Neptunium (237Np) -- 18.5 Americium (243Am) -- Appendix 1. Table of nuclear data for Mössbauer transitions -- Appendix 2. The relative intensities of hyperfine lines -- Notes on the International System of Units (SI) -- Author Index 
505 0 |a 1. The Mössbauer Effect -- 1.1 Energetics of free-atom recoil and thermal broadening -- 1.2 Heisenberg natural linewidth -- 1.3 Energy and momentum transfer to the lattice -- 1.4 Recoil-free fraction and Debye-Waller factor -- 1.5 Cross-section for resonant reabsorption -- 1.6 A Mössbauer spectrum -- 2. Experimental Techniques -- 2.1 Velocity modulation of gamma-rays -- 2.2 Constant-velocity drives -- 2.3 Repetitive velocity-scan systems -- 2.4 Derivative spectrometers -- 2.5 Scattering experiments -- 2.6 Source and absorber preparation -- 2.7 Detection equipment -- 2.8 Cryogenic equipment and ovens -- 2.9 Velocity calibration -- 2.10 Curve fitting by computer -- 3. Hyperfine Interactions -- 3.1 Chemical isomer shift, ? -- 3.2 Second-order Doppler shift and zero-point motion -- 3.3 Effect of pressure on the chemical isomer shift -- 3.4 Electric quadrupole interactions -- 3.5 Magnetic hyperfine interactions -- 3.6 Combined magnetic and quadrupole interactions --  
505 0 |a 7.2 Ferricyanides -- 7.3 Prussian blue -- 7.4 Substituted cyanides -- 7.5 Chelating ligands -- 8. Unusual Electronic Configurations of Iron -- 8.1 Iron(II) compounds showing 5T2?1A1 crossover -- 8.2 Iron(III) compounds showing 6A1?2T2 crossover -- 8.3 Iron(II) compounds with S = 1 spin state -- 8.4 Iron(III) compounds with S = 1/3 spin state -- 8.5 Iron 1,2-dithiolate complexes -- 8.6 Systems containing iron(I), iron(IV), and iron(VI) -- 9. Covalent Iron Compounds -- 9.1 Binary carbonyls, carbonyl anions, and hydride anions -- 9.2 Substituted iron carbonyls -- 9.3 Ferrocene and other ?-cyclopentadienyl derivatives -- 10. Iron Oxides and Sulphides -- 10.1 Binary oxides and hydroxides -- 10.2 Spinel oxides AB2O4 -- 10.3 Other ternary oxides -- 10.4 Iron(IV) oxides -- 10.5 Iron chalcogenides -- 10.6 Silicate minerals -- 10.7 Lunar samples -- 11. Alloys and Intermetallic Compounds -- 11.1 Metallic iron -- 11.2 Iron alloys -- 11.3 Intermetallic compounds -- 12. 57Fe — Impurity Studies --  
505 0 |a 3.7 Relative intensities of absorption lines -- 3.8 Relaxation phenomena -- 3.9 Anisotropy of the recoilless fraction -- 3.10 The pseudoquadrupole interaction -- 4. Applications of the Mössbauer Effect -- 4.1 Relativity and general physics -- 4.2 Nuclear physics -- 4.3 Solid-state physics and chemistry -- 5. 57Fe — Introduction -- 5.1 The ?-decay scheme -- 5.2 Source preparation and calibration -- 5.3 Chemical isomer shifts -- 5.4 Quadrupole splittings -- 5.5 Magnetic interactions -- 5.6 Polarised radiation studies -- 5.7 Energetic nuclear reactions -- 5.8 The 136-keV transition -- 6. High-spin Iron Complexes -- A. High-Spin Iron(II) Complexes -- 6.1 Iron(II) halides -- 6.2 Iron(II) salts of oxyacids and other anions -- 6.3 Iron(II) complexes with nitrogen ligands -- B. High-Spin Iron(III) Complexes -- 6.4 Iron(III) halides -- 6.5 Iron(III) salts ofoxyacids -- 6.6 Iron(III) complexes with chelating ligands -- 7. Low-spin Iron(II) and Iron(III) Complexes -- 7.1 Ferrocyanides --  
505 0 |a 12.1 Chemical compounds -- 12.2 Metals -- 12.3 Miscellaneous topics -- 13. Biological Compounds -- 13.1 Haemeproteins -- 13.2 Metalloproteins -- 14. Tin-119 -- 14.1 ?-Decay scheme and sources -- 14.2 Hyperfine interactions -- 14.3 Tin(II) compounds -- 14.4 Inorganic tin(IV) compounds -- 14.5 Organotin(IV) compounds -- 14.6 Metals and alloys -- 15. Other Main Group Elements -- 15.1 Potassium (40K) -- 15.2 Germanium (73Ge) -- 15.3 Krypton (83Kr) -- 15.4 Antimony (121Sb) -- 15.5 Tellurium (125Te) -- 15.6 Iodine (127I, 129I) -- 15.7 Xenon (129Xe, 131Xe) -- 15.8 Caesium (133Cs) -- 15.9 Barium (133Ba) -- 16. Other Transition-metal Elements -- 16.1 Nickel (61Ni) -- 16.2 Zinc (67Zn) -- 16.3 Technetium (99Tc) -- 16.4Ruthenium (99Ru) -- 16.5 Silver (107Ag) -- 16.6 Hafnium (176Hf, 177Hf, 178Hf, 180Hf) -- 16.7 Tantalum (181Ta) -- 16.8 Tungsten (182W, 183W, 184W, 186W) -- 16.9 Rhenium (187Re) -- 16.10 Osmium (186Os, 188Os, 189Os) -- 16.11 Iridium (191Ir, 193Ir) -- 16.12 Platinum (195Pt) --  
653 |a Humanities and Social Sciences 
653 |a Humanities 
653 |a Spectrum analysis 
653 |a Spectroscopy 
653 |a Social sciences 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-94-009-5697-1 
856 4 0 |u https://doi.org/10.1007/978-94-009-5697-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 543 
520 |a Rudolph Mossbauer discovered the phenomenon of recoil-free nuclear resonance fluorescence in 1957-58 and the first indications of hyperfine interactions in a chemical compound were obtained by Kistner and Sunyar in 1960. From these beginnings the technique of Mossbauer spectroscopy rapidly emerged and the astonishing versatility of this new technique soon led to its extensive application to a wide variety of chemical and solid-state problems. This book reviews the results obtained by Mossbauer spectroscopy during the past ten years in the belief that this will provide a firm basis for the continued development and application of the technique to new problems in the future. It has been our aim to write a unified and consistent treatment which firstly presents the basic principles underlying the phenomena involved, then outlines the experimental techniques used, and finally summarises the wealth of experimental and theoretical results which have been obtained. We have tried to give some feeling for the physical basis of the Mossbauer effect with­ out extensive use of mathematical formalism, and some appreciation of the experimental methods employed without embarking on a detailed discussion of electronics and instrumentation. However, full references to the original literature are provided and particular points can readily be pursued in more detail if required