Field Arithmetic

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar mea...

Full description

Bibliographic Details
Main Authors: Fried, Michael D., Jarden, Moshe (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1986, 1986
Edition:1st ed. 1986
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03525nmm a2200349 u 4500
001 EB000688113
003 EBX01000000000000000541195
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783662072165 
100 1 |a Fried, Michael D. 
245 0 0 |a Field Arithmetic  |h Elektronische Ressource  |c by Michael D. Fried, Moshe Jarden 
250 |a 1st ed. 1986 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1986, 1986 
300 |a XVII, 460 p. 2 illus  |b online resource 
505 0 |a 1. Infinite Galois Theory and Profinite Groups -- 2. Algebraic Function Fields of One Variable -- 3. The Riemann Hypothesis for Function Fields -- 4. Plane Curves -- 5. The ?ebotarev Density Theorem -- 6. Ultraproducts -- 7. Decision Procedures -- 8. Algebraically Closed Fields -- 9. Elements of Algebraic Geometry -- 10. Pseudo Algebraically Closed Fields -- 11. Hilbertian Fields -- 12. The Classical Hilbertian Fields -- 13. Nonstandard Structures -- 14. Nonstandard Approach to Hilbert’s Irreducibility Theorem -- 15. Profinite Groups and Hilbertian Fields -- 16. The Haar Measure -- 17. Effective Field Theory and Algebraic Geometry -- 18. The Elementary Theory of e-free PAC Fields -- 19. Examples and Applications -- 20. Projective Groups and Frattini Covers -- 21. Perfect PAC Fields of Bounded Corank -- 22. Undecidability -- 23. Frobenius Fields -- 24. On ?-free PAC Fields -- 25. Galois Stratification -- 26. Galois Stratification over Finite Fields -- Open Problems -- References 
653 |a Algebraic Geometry 
653 |a Mathematical logic 
653 |a Algebraic fields 
653 |a Field Theory and Polynomials 
653 |a Algebraic geometry 
653 |a Mathematical Logic and Foundations 
653 |a Polynomials 
700 1 |a Jarden, Moshe  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 
028 5 0 |a 10.1007/978-3-662-07216-5 
856 4 0 |u https://doi.org/10.1007/978-3-662-07216-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 512.3 
520 |a Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?