02782nmm a2200337 u 4500001001200000003002700012005001700039007002400056008004100080020001800121100002300139245009700162250001700259260006300276300003300339505078900372653002601161653002601187653006101213653002501274653005601299653002701355700003401382710003401416041001901450989003801469490010001507856007201607082001101679520075401690EB000687551EBX0100000000000000054063300000000000000.0cr|||||||||||||||||||||140122 ||| eng a97836620620121 aGiaquinta, Mariano00aCalculus of Variations IIhElektronische Ressourcecby Mariano Giaquinta, Stefan Hildebrandt a1st ed. 2004 aBerlin, HeidelbergbSpringer Berlin Heidelbergc2004, 2004 aXXIX, 655 pbonline resource0 aPart I: The First Variation and Necessary Conditions: The First Variation; Variational Problems with Subsidiary Conditions; General Variational Formulas -- Part II: The Second Variation and Sufficient Conditions; Second Variation, Excess Function, Convexity; Weak Minimizers and Jacobi Theory; Weierstrass Field Theory for One-dimensional Integrals and Strong Minimizers. CALCULUS OF VARIATIONS II - The Hamiltonian Formalism: Part III: Canonical Formalism and Hamilton-Jacobi Theory; Legendre Transformation, Hamiltonian Systems, Convexity, Field Theories; Parametric Variational Integrals -- Part IV: Hamilton-Jacobi Theory and Canonical Transformations: Hamilton-Jacobi Theory and Canonical Transformations; Partial Differential Equations of First Order and Contact Transformations aDifferential Geometry aDifferential geometry aCalculus of Variations and Optimal Control; Optimization aMathematical physics aTheoretical, Mathematical and Computational Physics aCalculus of variations1 aHildebrandt, Stefane[author]2 aSpringerLink (Online service)07aeng2ISO 639-2 bSBAaSpringer Book Archives -20040 aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics uhttps://doi.org/10.1007/978-3-662-06201-2?nosfx=yxVerlag3Volltext0 a515.64 aThis long-awaited book by two of the foremost researchers and writers in the field is the first part of a treatise that covers the subject in breadth and depth, paying special attention to the historical origins, partly in applications, e.g. from geometrical optics, of parts of the theory. A variety of aids to the reader are provided: besides the very detailed table of contents, an introduction to each chapter, section and subsection, an overview of the relevant literature (in Vol. 2) plus the references in the Scholia to each chapter, in the (historical) footnotes, and in the bibliography, and finally an index of the examples used throughout the book. Both individually and collectively these volumes have already become standard references