Geometry V Minimal Surfaces

Osserman (Ed.) Geometry V Minimal Surfaces The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka...

Full description

Bibliographic Details
Other Authors: Osserman, Robert (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1997, 1997
Edition:1st ed. 1997
Series:Encyclopaedia of Mathematical Sciences
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02548nmm a2200397 u 4500
001 EB000686286
003 EBX01000000000000000539368
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783662034842 
100 1 |a Osserman, Robert  |e [editor] 
245 0 0 |a Geometry V  |h Elektronische Ressource  |b Minimal Surfaces  |c edited by Robert Osserman 
250 |a 1st ed. 1997 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1997, 1997 
300 |a IX, 272 p  |b online resource 
505 0 |a I. Complete Embedded Minimal Surfaces of Finite Total Curvature -- II. Nevanlinna Theory and Minimal Surfaces -- III. Boundary Value Problems for Minimal Surfaces -- IV. The Minimal Surface Equation -- Author Index 
653 |a Geometry, Differential 
653 |a Functions of complex variables 
653 |a Mathematical analysis 
653 |a Calculus of Variations and Optimization 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Analysis 
653 |a System theory 
653 |a Functions of a Complex Variable 
653 |a Differential Geometry 
653 |a Mathematical optimization 
653 |a Calculus of variations 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Encyclopaedia of Mathematical Sciences 
028 5 0 |a 10.1007/978-3-662-03484-2 
856 4 0 |u https://doi.org/10.1007/978-3-662-03484-2?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 516.36 
520 |a Osserman (Ed.) Geometry V Minimal Surfaces The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka Fujimoto, who obtained the definitive results on the Gauss map of minimal surfaces, reports on Nevanlinna Theory and Minimal Surfaces. Stefan Hildebrandt provides an up-to-date account of the Plateau problem and related boundary-value problems. David Hoffman and Hermann Karcher describe the wealth of results on embedded minimal surfaces from the past decade, starting with Costa's surface and the subsequent Hoffman-Meeks examples. Finally, Leon Simon covers the PDE aspect of minimal surfaces, with a survey of known results both in the classical case of surfaces and in the higher dimensional case. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics