Combustion Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation

Combustion is an old technology, which at present provides about 90% of our worldwide energy support. Combustion research in the past used fluid mechanics with global heat release by chemical reactions described with thermodynamics, assuming infinitely fast reactions. This approach was useful for st...

Full description

Bibliographic Details
Main Authors: Warnatz, Jürgen, Maas, Ulrich (Author), Dibble, Robert W. (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1999, 1999
Edition:2nd ed. 1999
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 07038nmm a2200409 u 4500
001 EB000683815
003 EBX01000000000000000536897
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642980275 
100 1 |a Warnatz, Jürgen 
245 0 0 |a Combustion  |h Elektronische Ressource  |b Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation  |c by Jürgen Warnatz, Ulrich Maas, Robert W. Dibble 
250 |a 2nd ed. 1999 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1999, 1999 
300 |a X, 299 p  |b online resource 
505 0 |a 1 Introduction, Fundamental Definitions and Phenomena -- 1.1 Introduction -- 1.2 Some Fundamental Definitions -- 1.3 Basic Flame Types -- 1.4 Exercises -- 2 Experimental Investigation of Flames -- 2.1 Velocity Measurements -- 2.2 Density Measurement -- 2.3 Concentration Measurements -- 2.4 Temperature Measurements -- 2.5 Pressure Measurements -- 2.6 Measurement of Particle Sizes -- 2.7 Simultaneous Diagnostics -- 2.8 Exercises -- 3 Mathematical Description of Premixed Laminar Flat Flames -- 3.1 Conservation Equations for Laminar Flat Premixed Flames -- 3.2 Heat and Mass Transport -- 3.3 The Description of a Laminar Premixed Flat Flame Front -- 3.4 Exercises -- 4 Thermodynamics of Combustion Processes -- 4.1 The First Law of Thermodynamics -- 4.2 Standard Enthalpies of Formation -- 4.3 Heat Capacities -- 4.4 The Second Law of Thermodynamics -- 4.5 The Third Law of Thermodynamics -- 4.6 Equilibrium Criteria and Thermodynamic Variables --  
505 0 |a 14.5 Other Models of Turbulent Premixed Combustion -- 14.6 Exercises -- 15 Combustion of Liquid and Solid Fuels -- 15.1 Droplet and Spray Combustion -- 15.2 Coal Combustion -- 16 Low-Temperature Oxidation, Engine Knock -- 16.1 Fundamental Phenomena -- 16.2 High-Temperature Oxidation -- 16.3 Low-Temperature Oxidation -- 16.4 Knock Damages -- 16.5 Exercises -- 17 Formation of Nitric Oxides -- 17.1 Thermal NO (Zeldovich-NO) -- 17.2 Prompt NO (Fenimore-NO) -- 17.3 NO Generated via Nitrous Oxide -- 17.4 Conversion of Fuel Nitrogen into NO -- 17.5 NO Reduction by Combustion Modifications -- 17.6 Catalytic Combustion -- 17.7 NO-Reduction by Post-Combustion Processes -- 18 Formation of Hydrocarbons and Soot -- 18.1 Unburnt Hydrocarbons -- 18.2 Formation of Polycyclic Aromatic Hydrocarbons (PAH) -- 18.3 The Phenomenology of Soot Formation -- 18.4 Modelling and Simulation of Soot Formation -- 19 References -- 20 Index 
505 0 |a 7.3 Stiffness of Ordinary Differential Equation Systems -- 7.4 Simplification of Reaction Mechanisms -- 7.5 Radical Chain Reactions -- 7.6 Exercises -- 8 Laminar Premixed Flames -- 8.1 Zeldovich’s Analysis of Flame Propagation -- 8.2 Numerical Solution of the Conservation Equations -- 8.3 Flame Structures -- 8.4 Flame Velocities -- 8.5 Sensitivity Analysis -- 8.6 Exercises -- 9 Laminar Nonpremixed Flames -- 9.1 Counterflow Nonpremixed Flames -- 9.2 Laminar Jet Nonpremixed Flames -- 9.3 Nonpremixed Flames With Fast Chemistry -- 9.4 Exercises -- 10 Ignition Processes -- 10.1 Semenov’s Analysis of Thermal Explosions -- 10.2 Frank-Kamenetskii’s Analysis of Thermal Explosions -- 10.3 Autoignition: Ignition Limits -- 10.4 Autoignition: Ignition-Delay Time -- 10.5 Induced Ignition, Minimum Ignition Energies -- 10.6 Spark Ignition -- 10.7 Detonations -- 10.8 Exercises -- 11 The Navier-Stokes-Equations for Three-Dimensional Reacting Flows -- 11.1 The Conservation Equations --  
505 0 |a 4.7 Equilibrium in Gas Mixtures; Chemical Potential -- 4.8 Determination of Equilibrium Compositions in Gases -- 4.9 Determination of Adiabatic Flame Temoeratures -- 4.10 Tabulation of Thermodynamic Data -- 4.11 Exercises -- 5 Transport Phenomena -- 5.1 A Simple Physical Model of the Transport Processes -- 5.2 Heat Conduction in Gases -- 5.3 Viscosity of Gases -- 5.4 Diffusion in Gases -- 5.5 Thermal Diffusion, Dufour Effect, and Pressure Diffusion -- 5.6 Comparison with Experiments -- 5.7 Exercises -- 6 Chemical Kinetics -- 6.1 Rate Laws and Reaction Orders -- 6.2 Relation of Forward and Reverse Reactions -- 6.3 Elementary Reactions, Reaction Molecularity -- 6.4 Experimental Investigation of Elementarv Reactions -- 6.5 Temperature Dependence of Rate Coefficients -- 6.6 Pressure Dependence of Rate Coefficients -- 6.7 Surface Reactions -- 6.8 Exercises -- 7. Reaction Mechanisms -- 7.1 Characteristics of Reaction Mechanisms -- 7.2 Analysis of Reaction Mechanisms --  
505 0 |a 11.2 The Empirical Laws -- 11.3 Appendix: Some Definitions and Laws from Vector- and Tensor-Analysis -- 11.4 Exercises -- 12 Turbulent Reacting Flows -- 12.1 Some Fundamental Phenomena -- 12.2 Direct Numerical Simulation -- 12.3 Concepts for Turbulence Modeling: Probability Density Functions (PDFs) -- 12.4 Concepts for Turbulence Modeling: Time- and Favre-Averaging -- 12.5 Averaged Conservation Equations -- 12.6 Turbulence Models -- 12.7 Mean Reaction Rates -- 12.8 Eddy-Break-Up-Models -- 12.9 Large-Eddy Simulation (LES) -- 12.10 Turbulent Scales -- 12.11 Exercises -- 13 Turbulent Nonpremixed Flames -- 13.1 Nonpremixed Flames with Equilibrium Chemistry -- 13.2 Finite-Rate Chemistry in Nonpremixed Flames -- 13.3 Flame Extinction -- 13.4 PDF-Simulations of TurbulentNon-Premixed Flames -- 13.5 Exercises -- 14 Turbulent Premixed Flames -- 14.1 Classification of Turbulent Premixed Flames -- 14.2 Flamelet Models -- 14.3 Turbulent Flame Velocity -- 14.4 Flame Extinction --  
653 |a Environmental monitoring 
653 |a Physical chemistry 
653 |a Continuum mechanics 
653 |a Thermodynamics 
653 |a Physical Chemistry 
653 |a Pollution 
653 |a Continuum Mechanics 
653 |a Environmental Monitoring 
700 1 |a Maas, Ulrich  |e [author] 
700 1 |a Dibble, Robert W.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-3-642-98027-5 
856 4 0 |u https://doi.org/10.1007/978-3-642-98027-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 536.7 
520 |a Combustion is an old technology, which at present provides about 90% of our worldwide energy support. Combustion research in the past used fluid mechanics with global heat release by chemical reactions described with thermodynamics, assuming infinitely fast reactions. This approach was useful for stationary combustion processes, but it is not sufficient for transient processes like ignition and quenching or for pollutant formation. Yet pollutant formation during combustion of fossil fuels is a central topic and will continue to be so in future. This book provides a detailed and rigorous treatment of the coupling of chemical reactions and fluid flow. Also, combustion-specific topics of chemistry and fluid mechanics are considered, and tools described for the simulation of combustion processes. For the 2nd edition, the parts dealing with experiments, spray combustion, and soot were thoroughly revised