n-Widths in Approximation Theory

My original introduction to this subject was through conservations, and ultimate­ ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Error...

Full description

Bibliographic Details
Main Author: Pinkus, A.
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1985, 1985
Edition:1st ed. 1985
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04260nmm a2200349 u 4500
001 EB000670540
003 EBX01000000000000000523622
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642698941 
100 1 |a Pinkus, A. 
245 0 0 |a n-Widths in Approximation Theory  |h Elektronische Ressource  |c by A. Pinkus 
250 |a 1st ed. 1985 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1985, 1985 
300 |a X, 294 p  |b online resource 
505 0 |a I. Introduction -- II. Basic Properties of n-Widths -- 1. Properties of dn -- 2. Existence of Optimal Subspaces for dn -- 3. Properties of dn -- 4. Properties of ?n -- 5. Inequalities Between n-Widths -- 6. Duality Between dn and dn -- 7. n-Widths of Mappings of the Unit Ball -- 8. Some Relationships Between dn(T), dn(T) and ?n(T) -- Notes and References -- III. Tchebycheff Systems and Total Positivity -- 1. Tchebycheff Systems -- 2. Matrices -- 3. Kernels -- 4. More on Kernels -- IV. n-Widths in Hilbert Spaces -- 1. Introduction -- 2. n-Widths of Compact Linear Operators -- 3. n-Widths, with Constraints -- 4. n-Widths of Compact Periodic Convolution Operators -- 5. n-Widths of Totally Positive Operators in L2 -- 6. Certain Classes of Periodic Functions -- Notes and References -- V. Exact n-Widths of Integral Operators -- 1. Introduction -- 2. Exact n-Widths of K? in Lq and Kp in L1 -- 3. Exact n-Widths of K?r in Lq and Kpr in L1 -- 4. Exact n-Widths for Periodic Functions -- 5. n-Widths of Rank n + 1 Kernels -- Notes and References -- VI. Matrices and n-Widths -- 1. Introduction and General Remarks -- 2. n-Widths of Diagonal Matrices -- 3. n-Widths of Strictly Totally Positive Matrices -- Notes and References -- VII. Asymptotic Estimates for n-Widths of Sobolev Spaces -- 1. Introduction -- 2. Optimal Lower Bounds -- 3. Optimal Upper Bounds -- 4. Another Look at ?n(B1(r); L?) -- Notes and References -- VIII. n-Widths of Analytic Functions -- 1. Introduction -- 2. n-Widths of Analytic Functions with Bounded mth Derivative -- 3. n-Widths of Analytic Functions in H2 -- 4. n-Widths of Analytic Functions in H? -- 5. n-Widths of a Class of Entire Functions -- Notes and References -- Glossary of Selected Symbols -- Author Index 
653 |a Mathematical analysis 
653 |a Calculus of Variations and Optimization 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Analysis 
653 |a System theory 
653 |a Mathematical optimization 
653 |a Calculus of variations 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 
028 5 0 |a 10.1007/978-3-642-69894-1 
856 4 0 |u https://doi.org/10.1007/978-3-642-69894-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 3 
520 |a My original introduction to this subject was through conservations, and ultimate­ ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Errors in accuracy and omissions are totally my responsibility. I would like to express my appreciation to the SERC of Great Britain and to the Department of Mathematics of the University of Lancaster for the year spent there during which large portions of the manuscript were written, and also to the European Research Office of the U.S. Army for its financial support of my research endeavors. Thanks are also due to Marion Marks who typed portions of the manuscript. Haifa, 1984 Allan Pinkus Table of Contents 1 Chapter I. Introduction . . . . . . . . Chapter II. Basic Properties of n-Widths . 9 1. Properties of d • • • • • • • • • • 9 n 15 2. Existence of Optimal Subspaces for d • n n 17 3. Properties of d • • • • • • 20 4. Properties of b • • • • • • n 5. Inequalities Between n-Widths 22 n 6. Duality Between d and d • • 27 n 7. n-Widths of Mappings of the Unit Ball 29 8. Some Relationships Between dn(T), dn(T) and bn(T) . 32 37 Notes and References . . . . . . . . . . . . .