Functional Analysis

The present book is based on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i. e. , the general theory of linear operators in function spaces toge...

Full description

Main Author: Yosida, Kôsaku
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1995, 1995
Series:Classics in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02977nmm a2200289 u 4500
001 EB000668337
003 EBX01000000000000000521419
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642618598 
100 1 |a Yosida, Kôsaku 
245 0 0 |a Functional Analysis  |h Elektronische Ressource  |c by Kôsaku Yosida 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1995, 1995 
300 |a XVI, 504 p  |b online resource 
505 0 |a 0. Preliminaries -- I. Semi-norms -- II. Applications of the Baire-Hausdorff Theorem -- III. The Orthogonal Projection and F. Riesz’ Representation Theorem -- IV. The Hahn-Banach Theorems -- V. Strong Convergence and Weak Convergence -- VI. Fourier Transform and Differential Equations -- VII. Dual Operators -- VIII. Resolvent and Spectrum -- IX. Analytical Theory of Semi-groups -- X. Compact Operators -- XI. Normed Rings and Spectral Representation -- XII. Other Representation Theorems in Linear Spaces -- XIII. Ergodic Theory and Diffusion Theory -- XIV. The Integration of the Equation of Evolution -- Supplementary Notes -- Notation of Spaces 
653 |a Functional analysis 
653 |a Functional Analysis 
653 |a Mathematics 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Classics in Mathematics 
856 |u http://dx.doi.org/10.1007/978-3-642-61859-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.7 
520 |a The present book is based on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i. e. , the general theory of linear operators in function spaces together with salient features of its application to diverse fields of modern and classical analysis. Necessary prerequisites for the reading of this book are summarized, with or without proof, in Chapter 0 under titles: Set Theory, Topo­ logical Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathe­ maticians, both pure and applied. The reader may pass, e. g. , from Chapter IX (Analytical Theory of Semi-groups) directly to Chapter XIII (Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration of the Equation of Evolution). Such materials as "Weak Topologies and Duality in Locally Convex Spaces" and "Nuclear Spaces" are presented in the form of the appendices to Chapter V and Chapter X, respectively. These might be skipped for the first reading by those who are interested rather in the application of linear operators