Front Tracking for Hyperbolic Conservation Laws

Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the...

Full description

Bibliographic Details
Main Authors: Holden, Helge, Risebro, Nils H. (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2002, 2002
Edition:1st ed. 2002
Series:Applied Mathematical Sciences
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03387nmm a2200349 u 4500
001 EB000664745
003 EBX01000000000000000517827
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642561399 
100 1 |a Holden, Helge 
245 0 0 |a Front Tracking for Hyperbolic Conservation Laws  |h Elektronische Ressource  |c by Helge Holden, Nils H. Risebro 
250 |a 1st ed. 2002 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2002, 2002 
300 |a XII, 264 p. 2 illus  |b online resource 
505 0 |a 1 Introduction -- 1.1 Notes -- 2 Scalar Conservation Laws -- 2.1 Entropy Conditions -- 2.2 The Riemann Problem -- 2.3 Front Tracking -- 2.4 Existence and Uniqueness -- 2.5 Notes -- 3 A Short Course in Difference Methods -- 3.1 ConservativeMethods -- 3.2 Error Estimates -- 3.3 APriori Error Estimates -- 3.4 Measure-Valued Solutions -- 3.5 Notes -- 4 Multidimensional Scalar Conservation Laws -- 4.1 Dimensional SplittingMethods -- 4.2 Dimensional Splitting and Front Tracking -- 4.3 Convergence Rates -- 4.4 Operator Splitting: Diffusion -- 4.5 Operator Splitting: Source -- 4.6 Notes -- 5 The Riemann Problem for Systems -- 5.1 Hyperbolicity and Some Examples -- 5.2 Rarefaction Waves -- 5.3 The Hugoniot Locus: The Shock Curves -- 5.4 The Entropy Condition -- 5.5 The Solution of the Riemann Problem -- 5.6 Notes -- 6 Existence of Solutions of the Cauchy Problem -- 6.1 Front Tracking for Systems -- 6.2 Convergence -- 6.3 Notes -- 7 Well-Posedness of the Cauchy Problem -- 7.1 Stability -- 7.2 Uniqueness -- 7.3 Notes -- A Total Variation, Compactness, etc. -- A.1 Notes -- B The Method of Vanishing Viscosity -- B.1 Notes -- C Answers and Hints -- References 
653 |a Applied mathematics 
653 |a Engineering mathematics 
653 |a Applications of Mathematics 
653 |a Mathematical and Computational Engineering 
653 |a Mathematical physics 
653 |a Numerical analysis 
653 |a Numerical Analysis 
653 |a Theoretical, Mathematical and Computational Physics 
700 1 |a Risebro, Nils H.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Applied Mathematical Sciences 
856 4 0 |u https://doi.org/10.1007/978-3-642-56139-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519 
520 |a Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm