Field Theory Concepts Electromagnetic Fields. Maxwell’s Equations grad, curl, div. etc. Finite-Element Method. Finite-Difference Method. Charge Simulation Method. Monte Carlo Method

"Field Theory Concepts" is a new approach to the teaching and understanding of field theory. Exploiting formal analo- gies of electric, magnetic, and conduction fields and introducing generic concepts results in a transparently structured electomagnetic field theory. Highly illustrative te...

Full description

Bibliographic Details
Main Author: Schwab, Adolf J.
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1988, 1988
Edition:1st ed. 1988
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04033nmm a2200325 u 4500
001 EB000662279
003 EBX01000000000000000515361
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642489419 
100 1 |a Schwab, Adolf J. 
245 0 0 |a Field Theory Concepts  |h Elektronische Ressource  |b Electromagnetic Fields. Maxwell’s Equations grad, curl, div. etc. Finite-Element Method. Finite-Difference Method. Charge Simulation Method. Monte Carlo Method  |c by Adolf J. Schwab 
250 |a 1st ed. 1988 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1988, 1988 
300 |a XVI, 218 p  |b online resource 
505 0 |a 4.6 Vector Potential of the Conduction Field -- 5 Potential and Potential Function of Magnetostatic Fields -- 5.1 Magnetic Scalar Potential -- 5.2 Potential Equation for Magnetic Scalar Potentials -- 5.3 Magnetic Vector Potential -- 5.4 Potential Equation for Magnetic Vector Potentials -- 6 Classification of Electric and Magnetic Fields -- 6.1 Stationary Fields -- 6.2 Quasi-Stationary Fields (Steady-State) Fields -- 6.3 Nonstationary Fields, Electromagnetic Waves -- 7 Transmission-Line Equations -- 8 Typical Differential Equations of Electrodynamics and Mathematical Physics -- 8.1 Generalized Telegraphist’s Equation -- 8.2 Telegraphist’s Equation with a, b>0; c=0 -- 8.3 Telegraphist’s Equation with a>0; b=0; c=0 -- 8.4 Telegraphist’s Equation with b>0; a=0; c=0 -- 8.5 Helmholtz Equation -- 8.6 Schroedinger Equation -- 8.7Lorentz’s Invariance of Maxwell’s Equations -- 9 Numerical Calculation of Potential Fields -- 9.1 Finite-Element Method -- 9.2 Finite-Difference Method --  
505 0 |a 1 Elementary Concepts of Electric and Magnetic Fields -- 1.1 Flux and Flux Density of Vector Fields -- 1.2 Equations of Matter — Constitutive Relations -- 2 Types of Vector Fields -- 2.1 Electric Source Fields -- 2.2 Electric and Magnetic Vortex Fields -- 2.3 General Vector Fields -- 3 Field Theory Equations -- 3.1 Integral Form of Maxwells Equations -- 3.2 Law of Continuity in Integral Form Source Strength of Current Density Fields -- 3.3 Differential Form of Maxwell’s Equations -- 3.4 Law of Continuity in Differential Form Source Density of Current Density Fields -- 3.5 Maxwell’s Equations in Complex Notation -- 3.6 Integral Theorems of Stokes and Gauss -- 3.7 Network Model of Induction -- 4 Gradient, Potential, Potential Function -- 4.1 Gradient of a Scalar Field -- 4.2 Potential and Potential Function of Static Electric Fields -- 4.3 Development of the Potential Function from a Given Charge Distribution -- 4.4 Potential Equations -- 4.5 Electric Vector Potential --  
505 0 |a 9.3 Charge Simulation Method -- 9.4 Monte Carlo Method -- 9.5 General Remarks on Numerical Field Calculation -- A1 Units -- A2 Scalar and Vector Integrals -- A3 Vector Operations in Special Coordinate Systems -- A5 Complex Notation of Harmonic Quantities -- Literature 
653 |a Electrical and Electronic Engineering 
653 |a Electrical engineering 
653 |a Algebraic fields 
653 |a Field Theory and Polynomials 
653 |a Polynomials 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-3-642-48941-9 
856 4 0 |u https://doi.org/10.1007/978-3-642-48941-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 512.3 
520 |a "Field Theory Concepts" is a new approach to the teaching and understanding of field theory. Exploiting formal analo- gies of electric, magnetic, and conduction fields and introducing generic concepts results in a transparently structured electomagnetic field theory. Highly illustrative terms alloweasyaccess to the concepts of curl and div which generally are conceptually demanding. Emphasis is placed on the static, quasistatic and dynamic nature of fields. Eventually, numerical field calculation algorithms, e.g. Finite Element method and Monte Carlo method, are presented in a concise yet illustrative manner