The Forgotten Revolution How Science Was Born in 300 BC and Why it Had to Be Reborn

The period from the late fourth to the late second century B. C. witnessed, in Greek-speaking countries, an explosion of objective knowledge about the external world. WhileGreek culture had reached great heights in art, literature and philosophyalreadyin the earlier classical era, it is in the so-ca...

Full description

Bibliographic Details
Main Authors: Russo, Lucio, Levy, Silvio (translator) (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2004, 2004
Edition:1st ed. 2004
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 06361nmm a2200361 u 4500
001 EB000660436
003 EBX01000000000000000513518
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642189043 
100 1 |a Russo, Lucio 
245 0 0 |a The Forgotten Revolution  |h Elektronische Ressource  |b How Science Was Born in 300 BC and Why it Had to Be Reborn  |c by Lucio Russo, Silvio (translator) Levy 
250 |a 1st ed. 2004 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2004, 2004 
300 |a IX, 487 p  |b online resource 
505 0 |a 10.4 Combinatorics and Logic -- 10.5 Ptolemy and Hellenistic Astronomy -- 10.6 The Moon, the Sling and Hipparchus -- 10.7 A Passage of Seneca -- 10.8 Rays of Darkness and Triangular Rays -- 10.9 The Idea of Gravity after Aristotle -- 10.10 Tides -- 10.11 The Shape of the Earth: Sling or Ellipsoid? -- 10.12 Seleucus and the Proof of Heliocentrism -- 10.13 Precession, Comets, etc. -- 10.14 Ptolemy and Theon of Smyrna -- 10.15 The First Few Definitions in the Elements -- 11 The Age-Long Recovery -- 11.1 The Early Renaissances -- 11.2 The Renaissance -- 11.3 The Rediscovery of Optics in Europe -- 11.4 A Late Disciple of Archimedes -- 11.5 Two Modern Scientists: Kepler and Descartes -- 11.6 Terrestrial Motion, Tides and Gravitation -- 11.7 Newton’s Natural Philosophy -- 11.8 The Rift Between Mathematics and Physics -- 11.9 Ancient Science and Modern Science -- 11.10 The Erasure of Ancient Science -- 11.11 Recovery and Crisis of Scientific Methodology -- List of Passages -- References --  
505 0 |a 4.3 Military Technology -- 4.4 Sailing and Navigation -- 4.5 Naval Architecture. The Pharos -- 4.6 Hydraulic and Pneumatic Engineering -- 4.7 Use of Natural Power -- 4.8 The Antikythera Mechanism -- 4.9 Heron’sRole -- 4.10 The Lost Technology -- 5 Medicine and Other Empirical Sciences -- 5.1 The Birth of Anatomy and Physiology -- 5.2 Relationship Between Medicine and Exact Sciences -- 5.3 Anatomical Terminology and the Screw Press -- 5.4 The Scientific Method in Medicine -- 5.5 Development and End of Scientific Medicine -- 5.6 Botany and Zoology -- 5.7 Chemistry -- 6 The Hellenistic Scientific Method -- 6.1 Origins of Scientific Demonstration -- 6.2 Postulates or Hypotheses -- 6.3 Saving the Phainomena -- 6.4 Definitions, Scientific Terms and Theoretical Entities -- 6.5 Episteme and Techne -- 6.6 Postulates and the Meaning of “Mathematics” and “Physics” -- 6.7 Hellenistic Science and Experimental Method -- 6.8 Science and Orality --  
505 0 |a 6.9 Where Do Clichés about “Ancient Science” Come From? -- 7 Some Other Aspects of the Scientific Revolution -- 7.1 Urban Planning -- 7.2 Conscious and Unconscious Cultural Evolution -- 7.3 The Theory of Dreams -- 7.4 Propositional Logic -- 7.5 Philological and Linguistic Studies -- 7.6 The Figurative Arts, Literature and Music -- 8 The Decadence and End of Science -- 8.1 The Crisis in Hellenistic Science -- 8.2 Rome, Science and Scientific Technology -- 8.3 The End of Ancient Science -- 9 Science, Technology and Economy -- 9.1 Modernism and Primitivism -- 9.2 Scientific and Technological Policy -- 9.3 Economic Growth and Innovation in Agriculture -- 9.4 Nonagricultural Technology and Production -- 9.5 The Role of the City in the Ancient World -- 9.6 The Nature of the Ancient Economy -- 9.7 Ancient Science and Production -- 10 Lost Science -- 10.1 Lost Optics -- 10.2 Eratosthenes’ Measurement of the Meridian -- 10.3 Determinism, Chance and Atoms --  
505 0 |a 1 The Birth of Science -- 1.1 The Erasure of the Scientific Revolution -- 1.2 On theWord “Hellenistic” -- 1.3 Science -- 1.4 Was There Science in Classical Greece? -- 1.5 Origins of Hellenistic Science -- 2 Hellenistic Mathematics -- 2.1 Precursors of Mathematical Science -- 2.2 Euclid’s Hypothetico-Deductive Method -- 2.3 Geometry and Computational Aids -- 2.4 Discrete Mathematics and the Notion of Infinity -- 2.5 Continuous Mathematics -- 2.6 Euclid and His Predecessors -- 2.7 An Application of the “Method of Exhaustion” -- 2.8 Trigonometry and Spherical Geometry -- 3 Other Hellenistic Scientific Theories -- 3.1 Optics, Scenography and Catoptrics -- 3.2 Geodesy and Mathematical Geography -- 3.3 Mechanics -- 3.4 Hydrostatics -- 3.5 Pneumatics -- 3.6 Aristarchus, Heliocentrism, and Relative Motion -- 3.7 From the Closed World to the Infinite Universe -- 3.8 Ptolemaic Astronomy -- 4 Scientific Technology -- 4.1 Mechanical Engineering -- 4.2 Instrumentation --  
505 0 |a General Index 
653 |a Popular works 
653 |a History of Mathematical Sciences 
653 |a Popular Science, general 
653 |a History 
653 |a History of Science 
653 |a Mathematics 
700 1 |a Levy, Silvio (translator)  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
856 4 0 |u https://doi.org/10.1007/978-3-642-18904-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 509 
520 |a The period from the late fourth to the late second century B. C. witnessed, in Greek-speaking countries, an explosion of objective knowledge about the external world. WhileGreek culture had reached great heights in art, literature and philosophyalreadyin the earlier classical era, it is in the so-called Hellenistic period that we see for the ?rst time — anywhere in the world — the appearance of science as we understand it now: not an accumulation of facts or philosophically based speculations, but an or- nized effort to model nature and apply such models, or scienti?ctheories in a sense we will make precise, to the solution of practical problems and to a growing understanding of nature. We owe this new approach to scientists such as Archimedes, Euclid, Eratosthenes and many others less familiar todaybut no less remarkable. Yet, not long after this golden period, much of this extraordinary dev- opment had been reversed. Rome borrowed what it was capable of from the Greeks and kept it for a little while yet, but created very little science of its own. Europe was soon smothered in theobscurantism and stasis that blocked most avenues of intellectual development for a thousand years — until, as is well known, the rediscovery of ancient culture in its fullness paved the way to the modern age