Constrained Global Optimization: Algorithms and Applications

Global optimization is concerned with the characterization and computation of global minima or maxima of nonlinear functions. Such problems are widespread in mathematical modeling of real world systems for a very broad range of applications. The applications include economies of scale, fixed charges...

Full description

Bibliographic Details
Main Authors: Pardalos, Panos M., Rosen, J. Ben (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1987, 1987
Edition:1st ed. 1987
Series:Lecture Notes in Computer Science
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02273nmm a2200289 u 4500
001 EB000658064
003 EBX01000000000000000511146
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783540477556 
100 1 |a Pardalos, Panos M. 
245 0 0 |a Constrained Global Optimization: Algorithms and Applications  |h Elektronische Ressource  |c by Panos M. Pardalos, J. Ben Rosen 
250 |a 1st ed. 1987 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1987, 1987 
300 |a IX, 143 p  |b online resource 
505 0 |a Convex sets and functions -- Optimality conditions in nonlinear programming -- Combinatorial optimization problems that can be formulated as nonconvex quadratic problems -- Enumerative methods in nonconvex programming -- Cutting plane methods -- Branch and bound methods -- Bilinear programming methods for nonconvex quadratic problems -- Large scale problems -- Global minimization of indefinite quadratic problems -- Test problems for global nonconvex quadratic programming algorithms 
653 |a Numerical Analysis 
653 |a Numerical analysis 
700 1 |a Rosen, J. Ben  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Lecture Notes in Computer Science 
028 5 0 |a 10.1007/BFb0000035 
856 4 0 |u https://doi.org/10.1007/BFb0000035?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 518 
520 |a Global optimization is concerned with the characterization and computation of global minima or maxima of nonlinear functions. Such problems are widespread in mathematical modeling of real world systems for a very broad range of applications. The applications include economies of scale, fixed charges, allocation and location problems, quadratic assignment and a number of other combinatorial optimization problems. More recently it has been shown that certain aspects of VLSI chip design and database problems can be formulated as constrained global optimization problems with a quadratic objective function. Although standard nonlinear programming algorithms will usually obtain a local minimum to the problem , such a local minimum will only be global when certain conditions are satisfied (such as f and K being convex)