Statistical Mechanics of Neural Networks Proceedings of the XIth Sitges Conference Sitges, Barcelona, Spain, 3–7 June 1990
Combined for researchers and graduate students the articles from the Sitges Summer School together form an excellent survey of the applications of neural-network theory to statistical mechanics and computer-science biophysics. Various mathematical models are presented together with their interpretat...
Other Authors: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1990, 1990
|
Edition: | 1st ed. 1990 |
Series: | Lecture Notes in Physics
|
Subjects: | |
Online Access: | |
Collection: | Springer Book Archives -2004 - Collection details see MPG.ReNa |
Table of Contents:
- Dynamics and storage capacity of neural networks with sign-constrained weights
- The neural basis of the locomotion of nematodes
- Reversibility in neural processing systems
- Lyapunov functional for neural networks with delayed interactions and statistical mechanics of temporal associations
- Semi-local signal processing in the visual system
- Statistical mechanics and error-correcting codes
- Synergetic computers — An alternative to neurocomputers
- Dynamics of the Kohonen map
- Equivalence between connectionist classifiers and logical classifiers
- On Potts-glass neural networks with biased patterns
- Ising-spin neural networks with spatial structure
- Kinetically disordered lattice systems
- A programming system for implementing neural nets
- An auto-augmenting neural network architecture for diagnostic reasoning
- Formal integrators and neural networks
- Disorderedmodels of acquired dyslexia
- Higher order memories in optimally structured neural networks
- On the statistical-mechanical formulation of neural networks
- Model neurons: From Hodgkin-Huxley to hopfield
- Statistical mechanics for networks of analog neurons
- Properties of neural networks with multi-state neurons
- Adaptive recurrent neural networks and dynamic stability
- Neuronal oscillators: Experiments and models
- Neuronal networks in the hippocampus involved in memory
- Basins of attraction and spurious states in neural networks
- Tailoring the performance of attractor neural networks
- Learning and optimization
- Statistical dynamics of learning
- Learning and retrieving marked patterns
- Learning algorithm for binary synapses
- Statistical mechanics of the perceptron with maximal stability
- Simulation and hardware implementation of competitive learning neural networks
- Learning in multilayer networks: A geometric computational approach
- Storage capacity of diluted neural networks
- Random Boolean networks for autoassociative memory: Optimization and sequential learning