Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors
Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. T...
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2002, 2002
|
Edition: | 1st ed. 2002 |
Series: | Lecture Notes in Mathematics
|
Subjects: | |
Online Access: | |
Collection: | Springer Book Archives -2004 - Collection details see MPG.ReNa |
Summary: | Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved |
---|---|
Physical Description: | VIII, 156 p online resource |
ISBN: | 9783540458722 |