Hierarchical Neural Networks for Image Interpretation

Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in lim...

Full description

Bibliographic Details
Main Author: Behnke, Sven
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2003, 2003
Edition:1st ed. 2003
Series:Lecture Notes in Computer Science
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02291nmm a2200385 u 4500
001 EB000656289
003 EBX01000000000000001349224
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783540451693 
100 1 |a Behnke, Sven 
245 0 0 |a Hierarchical Neural Networks for Image Interpretation  |h Elektronische Ressource  |c by Sven Behnke 
250 |a 1st ed. 2003 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2003, 2003 
300 |a XIII, 227 p  |b online resource 
505 0 |a I. Theory -- Neurobiological Background -- Related Work -- Neural Abstraction Pyramid Architecture -- Unsupervised Learning -- Supervised Learning -- II. Applications -- Recognition of Meter Values -- Binarization of Matrix Codes -- Learning Iterative Image Reconstruction -- Face Localization -- Summary and Conclusions 
653 |a Neuroscience 
653 |a Computer science 
653 |a Neurosciences 
653 |a Computer vision 
653 |a Artificial Intelligence 
653 |a Algorithms 
653 |a Computer Vision 
653 |a Artificial intelligence 
653 |a Theory of Computation 
653 |a Automated Pattern Recognition 
653 |a Pattern recognition systems 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Lecture Notes in Computer Science 
028 5 0 |a 10.1007/b11963 
856 4 0 |u https://doi.org/10.1007/b11963?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 004.0151 
520 |a Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks